Flammability of blends of low-density polyethylene and ethylene vinyl acetate crosslinked by both dicumyl peroxide and ionizing radiation for wire and cable applications

Formulations of chemically crosslinked and radiation-crosslinked low-density polyethylene (LDPE) containing an intumescent flame retardant such as ammonium polyphosphate were prepared. The influence of blending LDPE with poly(ethylene vinyl acetate) (EVA) as well as the effects of a coadditive such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2008-07, Vol.109 (1), p.167-173
Hauptverfasser: Shukri, T.M, Mosnáček, J, Basfar, A.A, Bahattab, M.A, Noireaux, P, Courdreuse, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Formulations of chemically crosslinked and radiation-crosslinked low-density polyethylene (LDPE) containing an intumescent flame retardant such as ammonium polyphosphate were prepared. The influence of blending LDPE with poly(ethylene vinyl acetate) (EVA) as well as the effects of a coadditive such as talc on flammability was investigated. Chemical crosslinking by dicumyl peroxide and crosslinking by ionizing radiation from an electron-beam accelerator were both used and compared. An increase in the limiting oxygen index (LOI) was found by the partial replacement of LDPE with EVA. The effect of talc on the flammability depended on the amount of talc in the formulations. The addition of a small amount of talc increased LOI and reduced smoke during cone calorimeter measurements. A higher amount of talc led to a decrease in the LOI values. Formulations crosslinked by ionizing radiation yielded lower LOI values than chemically crosslinked formulations. This could be attributed to the use of trimethylolpropane triacrylate as a crosslinking coagent in formulations crosslinked by ionizing radiation.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.28080