Corrosion of UO2 and ThO2 : A quantum-mechanical investigation
The addition of Th to U-based fuels increases resistance to corrosion due to differences in redox-chemistry and electronic properties between UO2 and ThO2. Quantum-mechanical techniques were used to calculate surface energy trends for ThO2, resulting in (1 1 1) < (1 1 0) < (1 0 0). Adsorption...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear materials 2008-04, Vol.375 (3), p.290-310 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The addition of Th to U-based fuels increases resistance to corrosion due to differences in redox-chemistry and electronic properties between UO2 and ThO2. Quantum-mechanical techniques were used to calculate surface energy trends for ThO2, resulting in (1 1 1) < (1 1 0) < (1 0 0). Adsorption energy trends were calculated for water and oxygen on the stable (1 1 1) surface of UO2 and ThO2, and the effect of model set-up on these trends was evaluated. Molecular water is more stable than dissociated water on both binary oxides. Oxidation rates for atomic oxygen interacting with defect-free UO2(1 1 1) were calculated to be extremely slow if no water is present, but nearly instantaneous if water is present. The semi-conducting nature of UO2 is found to enhance the adsorption of oxygen in the presence of water through changes in near-surface electronic structure; the same effect is not observed on the insulating surface of ThO2. |
---|---|
ISSN: | 0022-3115 1873-4820 |
DOI: | 10.1016/j.jnucmat.2007.12.007 |