Characterization of thermal, optical and carrier transport properties of porous silicon using the photoacoustic technique

In this work, the porous silicon layer was prepared by the electrochemical anodization etching process on n-type and p-type silicon wafers. The formation of the porous layer has been identified by photoluminescence and SEM measurements. The optical absorption, energy gap, carrier transport and therm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. B, Condensed matter Condensed matter, 2008-08, Vol.403 (17), p.2634-2638
Hauptverfasser: Sheng, Chan Kok, Mahmood Mat Yunus, W., Yunus, Wan Md. Zin Wan, Abidin Talib, Zainal, Kassim, Anuar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, the porous silicon layer was prepared by the electrochemical anodization etching process on n-type and p-type silicon wafers. The formation of the porous layer has been identified by photoluminescence and SEM measurements. The optical absorption, energy gap, carrier transport and thermal properties of n-type and p-type porous silicon layers were investigated by analyzing the experimental data from photoacoustic measurements. The values of thermal diffusivity, energy gap and carrier transport properties have been found to be porosity-dependent. The energy band gap of n-type and p-type porous silicon layers was higher than the energy band gap obtained for silicon substrate (1.11 eV). In the range of porosity (50–76%) of the studies, our results found that the optical band-gap energy of p-type porous silicon (1.80–2.00 eV) was higher than that of the n-type porous silicon layer (1.70–1.86 eV). The thermal diffusivity value of the n-type porous layer was found to be higher than that of the p-type and both were observed to increase linearly with increasing layer porosity.
ISSN:0921-4526
1873-2135
DOI:10.1016/j.physb.2008.01.029