Vortex shedding modeling using diffusive van der Pol oscillators
A simple model for the near wake dynamics of slender bluff bodies in cross-flow is analyzed. It is based on a continuous distribution of van der Pol oscillators arranged along the spanwise extent of the structure and interacting by diffusion. Diffusive interaction is shown to be able to model cellul...
Gespeichert in:
Veröffentlicht in: | Comptes rendus. Mecanique 2002-01, Vol.330 (7), p.451-456 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A simple model for the near wake dynamics of slender bluff bodies in cross-flow is analyzed. It is based on a continuous distribution of van der Pol oscillators arranged along the spanwise extent of the structure and interacting by diffusion. Diffusive interaction is shown to be able to model cellular vortex shedding in shear flow, the cell size being estimated analytically with respect to the model parameters. Moreover, diffusive interaction succeeds in describing qualitatively the global suppression of vortex shedding from a sinuous structure in uniform flow.
To cite this article: M.L. Facchinetti et al., C. R. Mecanique 330 (2002) 451–456.
Nous analysons un modèle simple de la dynamique du sillage proche derrière une structure élancée. Le modèle est constitué par une distribution continue, le long de la structure, d'oscillateurs de van der Pol interagissant par diffusion. En écoulement cisaillé, la diffusion permet de décrire le détachement tourbillonnaire par cellules, dont la taille est ici calculée analytiquement en fonction des paramètres du modèle. Dans le cas d'une structure sinueuse en écoulement uniforme, le modèle reproduit qualitativement la suppression globale du détachement tourbillonnaire.
Pour citer cet article : M.L. Facchinetti et al., C. R. Mecanique 330 (2002) 451–456. |
---|---|
ISSN: | 1631-0721 1873-7234 1873-7234 |
DOI: | 10.1016/S1631-0721(02)01492-4 |