Volume-convergent sequences of Haken 3-manifolds

Let M be a closed orientable 3-manifold and let Vol( M) denote its Gromov simplicial volume. This paper is devoted to the study of sequences of non-zero degree maps f i :M→N i to Haken manifolds. We prove that any sequence of Haken manifolds ( N i , f i ), satisfying lim i→∞ deg( f i )×Vol( N i )=Vo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comptes rendus. Mathématique 2003-05, Vol.336 (10), p.833-838
1. Verfasser: Derbez, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 838
container_issue 10
container_start_page 833
container_title Comptes rendus. Mathématique
container_volume 336
creator Derbez, P.
description Let M be a closed orientable 3-manifold and let Vol( M) denote its Gromov simplicial volume. This paper is devoted to the study of sequences of non-zero degree maps f i :M→N i to Haken manifolds. We prove that any sequence of Haken manifolds ( N i , f i ), satisfying lim i→∞ deg( f i )×Vol( N i )=Vol( M) is finite up to homeomorphism. As an application, we deduce from this fact that any closed orientable 3-manifold with zero Gromov simplicial volume and in particular any graph manifold dominates at most finitely many Haken 3-manifolds. To cite this article: P. Derbez, C. R. Acad. Sci. Paris, Ser. I 336 (2003). Soit M une 3-variété close orientable et désignons par Vol( M) le volume simplicial de Gromov de M. Cette Note est consacrée à l'étude des applications de degré non-nul f i :M→N i où chaque N i est une variété Haken. Le résultat principal affirme que toute suite ( N i , f i ) de variétés Haken satisfaisant lim i→∞ deg( f i )×Vol( N i )=Vol( M) est finie, à homéomorphisme près. Ce résultat implique en particulier que toute 3-variété close orientable dont le volume simplicial de Gromov est nul (en particulier toute variété graphée) domine au plus un nombre fini de variétés Haken. Pour citer cet article : P. Derbez, C. R. Acad. Sci. Paris, Ser. I 336 (2003).
doi_str_mv 10.1016/S1631-073X(03)00187-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32733777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1631073X03001870</els_id><sourcerecordid>32733777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-87f7e3e0c84d7ac78ed200251455a413de31608a2103d43f94742bf25f9e11e93</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMouK7-CUIvih6iSSZt2pPIoq6w4MEPvIWYTiTaNmvSXfC_t_shHj3NO_xm3rxHyDFnF5zx4vKRF8ApU_B6xuCcMV4qynbIiCtVUsiLanfQv8g-OUjpY4CKSlUjwl5Cs2iR2tAtMb5j12cJvxbYWUxZcNnUfGKXAW1N511o6nRI9pxpEh5t55g83948TaZ09nB3P7meUSuqvKelcgoBmS1lrYxVJdaCMZFzmedGcqgReMFKIziDWoKrpJLizYncVcg5VjAmp5u78xiGf1KvW58sNo3pMCySBqEAlFIDmG9AG0NKEZ2eR9-a-K0506t-9LofvQqvGeh1P4MYk5OtgUnWNC6azvr0tyxLCaIqBu5qw-GQdukx6mT9qp_aR7S9roP_x-kHFnN4QA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32733777</pqid></control><display><type>article</type><title>Volume-convergent sequences of Haken 3-manifolds</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Derbez, P.</creator><creatorcontrib>Derbez, P.</creatorcontrib><description>Let M be a closed orientable 3-manifold and let Vol( M) denote its Gromov simplicial volume. This paper is devoted to the study of sequences of non-zero degree maps f i :M→N i to Haken manifolds. We prove that any sequence of Haken manifolds ( N i , f i ), satisfying lim i→∞ deg( f i )×Vol( N i )=Vol( M) is finite up to homeomorphism. As an application, we deduce from this fact that any closed orientable 3-manifold with zero Gromov simplicial volume and in particular any graph manifold dominates at most finitely many Haken 3-manifolds. To cite this article: P. Derbez, C. R. Acad. Sci. Paris, Ser. I 336 (2003). Soit M une 3-variété close orientable et désignons par Vol( M) le volume simplicial de Gromov de M. Cette Note est consacrée à l'étude des applications de degré non-nul f i :M→N i où chaque N i est une variété Haken. Le résultat principal affirme que toute suite ( N i , f i ) de variétés Haken satisfaisant lim i→∞ deg( f i )×Vol( N i )=Vol( M) est finie, à homéomorphisme près. Ce résultat implique en particulier que toute 3-variété close orientable dont le volume simplicial de Gromov est nul (en particulier toute variété graphée) domine au plus un nombre fini de variétés Haken. Pour citer cet article : P. Derbez, C. R. Acad. Sci. Paris, Ser. I 336 (2003).</description><identifier>ISSN: 1631-073X</identifier><identifier>ISSN: 1778-3569</identifier><identifier>EISSN: 1778-3569</identifier><identifier>DOI: 10.1016/S1631-073X(03)00187-0</identifier><language>eng</language><publisher>Paris: Elsevier SAS</publisher><subject>Exact sciences and technology ; Manifolds and cell complexes ; Mathematics ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Comptes rendus. Mathématique, 2003-05, Vol.336 (10), p.833-838</ispartof><rights>2003 Académie des sciences</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c295t-87f7e3e0c84d7ac78ed200251455a413de31608a2103d43f94742bf25f9e11e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1631073X03001870$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14843296$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Derbez, P.</creatorcontrib><title>Volume-convergent sequences of Haken 3-manifolds</title><title>Comptes rendus. Mathématique</title><description>Let M be a closed orientable 3-manifold and let Vol( M) denote its Gromov simplicial volume. This paper is devoted to the study of sequences of non-zero degree maps f i :M→N i to Haken manifolds. We prove that any sequence of Haken manifolds ( N i , f i ), satisfying lim i→∞ deg( f i )×Vol( N i )=Vol( M) is finite up to homeomorphism. As an application, we deduce from this fact that any closed orientable 3-manifold with zero Gromov simplicial volume and in particular any graph manifold dominates at most finitely many Haken 3-manifolds. To cite this article: P. Derbez, C. R. Acad. Sci. Paris, Ser. I 336 (2003). Soit M une 3-variété close orientable et désignons par Vol( M) le volume simplicial de Gromov de M. Cette Note est consacrée à l'étude des applications de degré non-nul f i :M→N i où chaque N i est une variété Haken. Le résultat principal affirme que toute suite ( N i , f i ) de variétés Haken satisfaisant lim i→∞ deg( f i )×Vol( N i )=Vol( M) est finie, à homéomorphisme près. Ce résultat implique en particulier que toute 3-variété close orientable dont le volume simplicial de Gromov est nul (en particulier toute variété graphée) domine au plus un nombre fini de variétés Haken. Pour citer cet article : P. Derbez, C. R. Acad. Sci. Paris, Ser. I 336 (2003).</description><subject>Exact sciences and technology</subject><subject>Manifolds and cell complexes</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>1631-073X</issn><issn>1778-3569</issn><issn>1778-3569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LxDAQxYMouK7-CUIvih6iSSZt2pPIoq6w4MEPvIWYTiTaNmvSXfC_t_shHj3NO_xm3rxHyDFnF5zx4vKRF8ApU_B6xuCcMV4qynbIiCtVUsiLanfQv8g-OUjpY4CKSlUjwl5Cs2iR2tAtMb5j12cJvxbYWUxZcNnUfGKXAW1N511o6nRI9pxpEh5t55g83948TaZ09nB3P7meUSuqvKelcgoBmS1lrYxVJdaCMZFzmedGcqgReMFKIziDWoKrpJLizYncVcg5VjAmp5u78xiGf1KvW58sNo3pMCySBqEAlFIDmG9AG0NKEZ2eR9-a-K0506t-9LofvQqvGeh1P4MYk5OtgUnWNC6azvr0tyxLCaIqBu5qw-GQdukx6mT9qp_aR7S9roP_x-kHFnN4QA</recordid><startdate>20030515</startdate><enddate>20030515</enddate><creator>Derbez, P.</creator><general>Elsevier SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20030515</creationdate><title>Volume-convergent sequences of Haken 3-manifolds</title><author>Derbez, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-87f7e3e0c84d7ac78ed200251455a413de31608a2103d43f94742bf25f9e11e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Exact sciences and technology</topic><topic>Manifolds and cell complexes</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Derbez, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Comptes rendus. Mathématique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Derbez, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Volume-convergent sequences of Haken 3-manifolds</atitle><jtitle>Comptes rendus. Mathématique</jtitle><date>2003-05-15</date><risdate>2003</risdate><volume>336</volume><issue>10</issue><spage>833</spage><epage>838</epage><pages>833-838</pages><issn>1631-073X</issn><issn>1778-3569</issn><eissn>1778-3569</eissn><abstract>Let M be a closed orientable 3-manifold and let Vol( M) denote its Gromov simplicial volume. This paper is devoted to the study of sequences of non-zero degree maps f i :M→N i to Haken manifolds. We prove that any sequence of Haken manifolds ( N i , f i ), satisfying lim i→∞ deg( f i )×Vol( N i )=Vol( M) is finite up to homeomorphism. As an application, we deduce from this fact that any closed orientable 3-manifold with zero Gromov simplicial volume and in particular any graph manifold dominates at most finitely many Haken 3-manifolds. To cite this article: P. Derbez, C. R. Acad. Sci. Paris, Ser. I 336 (2003). Soit M une 3-variété close orientable et désignons par Vol( M) le volume simplicial de Gromov de M. Cette Note est consacrée à l'étude des applications de degré non-nul f i :M→N i où chaque N i est une variété Haken. Le résultat principal affirme que toute suite ( N i , f i ) de variétés Haken satisfaisant lim i→∞ deg( f i )×Vol( N i )=Vol( M) est finie, à homéomorphisme près. Ce résultat implique en particulier que toute 3-variété close orientable dont le volume simplicial de Gromov est nul (en particulier toute variété graphée) domine au plus un nombre fini de variétés Haken. Pour citer cet article : P. Derbez, C. R. Acad. Sci. Paris, Ser. I 336 (2003).</abstract><cop>Paris</cop><pub>Elsevier SAS</pub><doi>10.1016/S1631-073X(03)00187-0</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1631-073X
ispartof Comptes rendus. Mathématique, 2003-05, Vol.336 (10), p.833-838
issn 1631-073X
1778-3569
1778-3569
language eng
recordid cdi_proquest_miscellaneous_32733777
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Exact sciences and technology
Manifolds and cell complexes
Mathematics
Sciences and techniques of general use
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Volume-convergent sequences of Haken 3-manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A41%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Volume-convergent%20sequences%20of%20Haken%203-manifolds&rft.jtitle=Comptes%20rendus.%20Math%C3%A9matique&rft.au=Derbez,%20P.&rft.date=2003-05-15&rft.volume=336&rft.issue=10&rft.spage=833&rft.epage=838&rft.pages=833-838&rft.issn=1631-073X&rft.eissn=1778-3569&rft_id=info:doi/10.1016/S1631-073X(03)00187-0&rft_dat=%3Cproquest_cross%3E32733777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32733777&rft_id=info:pmid/&rft_els_id=S1631073X03001870&rfr_iscdi=true