Asymmetric type II periodic motions for nonlinear impact oscillators

In this paper a general class of nonlinear impact oscillators is considered for Type II periodic motions. This system can be used to model an inverted pendulum impacting on rigid walls under external periodic excitation. The unperturbed system possesses a pair of homoclinic cycles and three separate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2008-05, Vol.68 (9), p.2681-2696
Hauptverfasser: Li, Yurong, Du, Zhengdong, Zhang, Weinian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper a general class of nonlinear impact oscillators is considered for Type II periodic motions. This system can be used to model an inverted pendulum impacting on rigid walls under external periodic excitation. The unperturbed system possesses a pair of homoclinic cycles and three separate families of periodic orbits inside and outside the homoclinic cycles via the identification given by the impact law. By approximating the Poincaré map to O ( ε ) directly, a general method of Melnikov type for detecting the existence of asymmetric Type II subharmonic orbits outside the homoclinic cycles is presented.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2007.02.015