On the asymptotics of global solutions of higher-order semilinear parabolic equations in the supercritical range

We study the asymptotic behaviour of global bounded solutions of the Cauchy problem for the semilinear 2 mth order parabolic equation u t =−(− Δ) m u+| u| p in R N × R +, where m>1, p>1, with bounded integrable initial data u 0. We prove that in the supercritical Fujita range p> p F =1+2 m/...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comptes rendus. Mathématique 2002-11, Vol.335 (10), p.805-810
Hauptverfasser: Egorov, Yu.V., Galaktionov, V.A., Kondratiev, V.A., Pohozaev, S.I.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the asymptotic behaviour of global bounded solutions of the Cauchy problem for the semilinear 2 mth order parabolic equation u t =−(− Δ) m u+| u| p in R N × R +, where m>1, p>1, with bounded integrable initial data u 0. We prove that in the supercritical Fujita range p> p F =1+2 m/ N any small global solution with nonnegative initial mass, ∫u 0 dx⩾0 , exhibits as t→∞ the asymptotic behaviour given by the fundamental solution of the linear parabolic operator (unlike the case p∈ ]1,p F] where solutions can blow-up for any arbitrarily small initial data). A discrete spectrum of other possible asymptotic patterns and the corresponding monotone sequence of critical exponents {p l=1+2m/(l+N), l=0,1,2,…} , where p 0= p F , are discussed. To cite this article: Yu.V. Egorov et al., C. R. Acad. Sci. Paris, Ser. I 335 (2002) 805–810. On considère le comportement asymptotique des solutions globales bornées du problème de Cauchy pour l'équation parabolique sémi-linéaire d'ordre 2 m u t =−(− Δ) m u+| u| p in R N × R +, u( x,0)= u 0∈ X= L 1( R N )∩ L ∞( R N ), où m>1, p>1. On vérifie que dans le cas surcritique de Fujita p> p F =1+2 m/ N toute petite solution globale avec la donnée initiale vérifiant ∫u 0 dx⩾0 , montre le comportement asymptotique quand t→∞ défini par la solution fondamentale de l'opérateur linéaire parabolique, à la différence du cas p∈ ]1,p F] quand la solution peut exploser pour la donnée initiale arbitrairement petite. Le spectre discret des pistes possibles et la suite correspondante des exponents critiques {p l=1+2m/(l+N), l=0,1,2,…} , où p 0= p F , sont descriptes. Pour citer cet article : Yu.V. Egorov et al., C. R. Acad. Sci. Paris, Ser. I 335 (2002) 805–810.
ISSN:1631-073X
1778-3569
1778-3569
DOI:10.1016/S1631-073X(02)02567-0