Influence of particle density on 3D size effects in the fracture of (numerical) concrete
In this paper, three-dimensional beam lattice models are extended and used for simulating size effects on strength of 3-point bending fracture experiments on concrete. At the meso-level concrete is schematized as a three-phase material, consisting of aggregate particles, cement matrix and the bond z...
Gespeichert in:
Veröffentlicht in: | Mechanics of materials 2008-06, Vol.40 (6), p.470-486 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 486 |
---|---|
container_issue | 6 |
container_start_page | 470 |
container_title | Mechanics of materials |
container_volume | 40 |
creator | Man, Hau-Kit van Mier, Jan G.M. |
description | In this paper, three-dimensional beam lattice models are extended and used for simulating size effects on strength of 3-point bending fracture experiments on concrete. At the meso-level concrete is schematized as a three-phase material, consisting of aggregate particles, cement matrix and the bond zone, which separates these two phases. Displacement-controlled 3-point bending experiments are simulated varying the particle density
P
k
(
P
k
=
0%, 15%, 35% and 55%) and the specimen size, which is scaled in all three dimensions in a range of 1:8 (volume range 1:512), containing between 15,703 and 7,448,373 lattice elements. The numerical analyses show particle density dependent scaling behaviour of strength. For very low (0%) and high (55%) particle density, scaling comes close to classical Weibull theory; for intermediate densities a significantly different power emerges caused by stable pre-critical crack growth leading to hardening. |
doi_str_mv | 10.1016/j.mechmat.2007.11.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32498339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167663607001603</els_id><sourcerecordid>32498339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-7535933f58d7ba4c8abec7701a5d3363fac053da5be415a32299112d60c1437a3</originalsourceid><addsrcrecordid>eNqFkEFv1DAQhS1EpS6Fn1DJFxAcEuxMHCcnhEqBSpV6KRI3yzsZq14lzmI7ldpfj7e74sppLt-bp_cxdilFLYXsPu_qmfBhtrluhNC1lLUQ8IptZK-bSusWXrNN4XTVddCdszcp7YQQalB6w37fBDetFJD44vjexuxxIj5SSD4_8SVw-MaTfyZOzhHmxH3g-YG4ixbzGl9iH8M6U_Rop08cl4CRMr1lZ85Oid6d7gX79f36_upndXv34-bq622FLXS50grUAOBUP-qtbbG3W0KthbRqBOjAWRQKRqu21EploWmGQcpm7ATKFrSFC_bh-Hcflz8rpWxmn5CmyQZa1mSgaYceYCigOoIYl5QiObOPfrbxyUhhDh7Nzpw8moNHI6UpHkvu_anAprKw7A7o079wIxrVl5LCfTlyVNY-eoomoT-IHX0s4sy4-P80_QVAc4q1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32498339</pqid></control><display><type>article</type><title>Influence of particle density on 3D size effects in the fracture of (numerical) concrete</title><source>Elsevier ScienceDirect Journals</source><creator>Man, Hau-Kit ; van Mier, Jan G.M.</creator><creatorcontrib>Man, Hau-Kit ; van Mier, Jan G.M.</creatorcontrib><description>In this paper, three-dimensional beam lattice models are extended and used for simulating size effects on strength of 3-point bending fracture experiments on concrete. At the meso-level concrete is schematized as a three-phase material, consisting of aggregate particles, cement matrix and the bond zone, which separates these two phases. Displacement-controlled 3-point bending experiments are simulated varying the particle density
P
k
(
P
k
=
0%, 15%, 35% and 55%) and the specimen size, which is scaled in all three dimensions in a range of 1:8 (volume range 1:512), containing between 15,703 and 7,448,373 lattice elements. The numerical analyses show particle density dependent scaling behaviour of strength. For very low (0%) and high (55%) particle density, scaling comes close to classical Weibull theory; for intermediate densities a significantly different power emerges caused by stable pre-critical crack growth leading to hardening.</description><identifier>ISSN: 0167-6636</identifier><identifier>EISSN: 1872-7743</identifier><identifier>DOI: 10.1016/j.mechmat.2007.11.003</identifier><identifier>CODEN: MSMSD3</identifier><language>eng</language><publisher>Lausanne: Elsevier Ltd</publisher><subject>3-Point bending ; 3D fracture scaling ; Applied sciences ; Building structure ; Buildings. Public works ; Concrete ; Concrete structure ; Construction (buildings and works) ; Exact sciences and technology ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Lattice model ; Numerical simulation ; Particle density ; Physics ; Size effects ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>Mechanics of materials, 2008-06, Vol.40 (6), p.470-486</ispartof><rights>2008 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-7535933f58d7ba4c8abec7701a5d3363fac053da5be415a32299112d60c1437a3</citedby><cites>FETCH-LOGICAL-c436t-7535933f58d7ba4c8abec7701a5d3363fac053da5be415a32299112d60c1437a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167663607001603$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20258324$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Man, Hau-Kit</creatorcontrib><creatorcontrib>van Mier, Jan G.M.</creatorcontrib><title>Influence of particle density on 3D size effects in the fracture of (numerical) concrete</title><title>Mechanics of materials</title><description>In this paper, three-dimensional beam lattice models are extended and used for simulating size effects on strength of 3-point bending fracture experiments on concrete. At the meso-level concrete is schematized as a three-phase material, consisting of aggregate particles, cement matrix and the bond zone, which separates these two phases. Displacement-controlled 3-point bending experiments are simulated varying the particle density
P
k
(
P
k
=
0%, 15%, 35% and 55%) and the specimen size, which is scaled in all three dimensions in a range of 1:8 (volume range 1:512), containing between 15,703 and 7,448,373 lattice elements. The numerical analyses show particle density dependent scaling behaviour of strength. For very low (0%) and high (55%) particle density, scaling comes close to classical Weibull theory; for intermediate densities a significantly different power emerges caused by stable pre-critical crack growth leading to hardening.</description><subject>3-Point bending</subject><subject>3D fracture scaling</subject><subject>Applied sciences</subject><subject>Building structure</subject><subject>Buildings. Public works</subject><subject>Concrete</subject><subject>Concrete structure</subject><subject>Construction (buildings and works)</subject><subject>Exact sciences and technology</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Lattice model</subject><subject>Numerical simulation</subject><subject>Particle density</subject><subject>Physics</subject><subject>Size effects</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>0167-6636</issn><issn>1872-7743</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkEFv1DAQhS1EpS6Fn1DJFxAcEuxMHCcnhEqBSpV6KRI3yzsZq14lzmI7ldpfj7e74sppLt-bp_cxdilFLYXsPu_qmfBhtrluhNC1lLUQ8IptZK-bSusWXrNN4XTVddCdszcp7YQQalB6w37fBDetFJD44vjexuxxIj5SSD4_8SVw-MaTfyZOzhHmxH3g-YG4ixbzGl9iH8M6U_Rop08cl4CRMr1lZ85Oid6d7gX79f36_upndXv34-bq622FLXS50grUAOBUP-qtbbG3W0KthbRqBOjAWRQKRqu21EploWmGQcpm7ATKFrSFC_bh-Hcflz8rpWxmn5CmyQZa1mSgaYceYCigOoIYl5QiObOPfrbxyUhhDh7Nzpw8moNHI6UpHkvu_anAprKw7A7o079wIxrVl5LCfTlyVNY-eoomoT-IHX0s4sy4-P80_QVAc4q1</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Man, Hau-Kit</creator><creator>van Mier, Jan G.M.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20080601</creationdate><title>Influence of particle density on 3D size effects in the fracture of (numerical) concrete</title><author>Man, Hau-Kit ; van Mier, Jan G.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-7535933f58d7ba4c8abec7701a5d3363fac053da5be415a32299112d60c1437a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>3-Point bending</topic><topic>3D fracture scaling</topic><topic>Applied sciences</topic><topic>Building structure</topic><topic>Buildings. Public works</topic><topic>Concrete</topic><topic>Concrete structure</topic><topic>Construction (buildings and works)</topic><topic>Exact sciences and technology</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Lattice model</topic><topic>Numerical simulation</topic><topic>Particle density</topic><topic>Physics</topic><topic>Size effects</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Man, Hau-Kit</creatorcontrib><creatorcontrib>van Mier, Jan G.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Mechanics of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Man, Hau-Kit</au><au>van Mier, Jan G.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of particle density on 3D size effects in the fracture of (numerical) concrete</atitle><jtitle>Mechanics of materials</jtitle><date>2008-06-01</date><risdate>2008</risdate><volume>40</volume><issue>6</issue><spage>470</spage><epage>486</epage><pages>470-486</pages><issn>0167-6636</issn><eissn>1872-7743</eissn><coden>MSMSD3</coden><abstract>In this paper, three-dimensional beam lattice models are extended and used for simulating size effects on strength of 3-point bending fracture experiments on concrete. At the meso-level concrete is schematized as a three-phase material, consisting of aggregate particles, cement matrix and the bond zone, which separates these two phases. Displacement-controlled 3-point bending experiments are simulated varying the particle density
P
k
(
P
k
=
0%, 15%, 35% and 55%) and the specimen size, which is scaled in all three dimensions in a range of 1:8 (volume range 1:512), containing between 15,703 and 7,448,373 lattice elements. The numerical analyses show particle density dependent scaling behaviour of strength. For very low (0%) and high (55%) particle density, scaling comes close to classical Weibull theory; for intermediate densities a significantly different power emerges caused by stable pre-critical crack growth leading to hardening.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.mechmat.2007.11.003</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6636 |
ispartof | Mechanics of materials, 2008-06, Vol.40 (6), p.470-486 |
issn | 0167-6636 1872-7743 |
language | eng |
recordid | cdi_proquest_miscellaneous_32498339 |
source | Elsevier ScienceDirect Journals |
subjects | 3-Point bending 3D fracture scaling Applied sciences Building structure Buildings. Public works Concrete Concrete structure Construction (buildings and works) Exact sciences and technology Fracture mechanics (crack, fatigue, damage...) Fundamental areas of phenomenology (including applications) Lattice model Numerical simulation Particle density Physics Size effects Solid mechanics Structural and continuum mechanics |
title | Influence of particle density on 3D size effects in the fracture of (numerical) concrete |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A31%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20particle%20density%20on%203D%20size%20effects%20in%20the%20fracture%20of%20(numerical)%20concrete&rft.jtitle=Mechanics%20of%20materials&rft.au=Man,%20Hau-Kit&rft.date=2008-06-01&rft.volume=40&rft.issue=6&rft.spage=470&rft.epage=486&rft.pages=470-486&rft.issn=0167-6636&rft.eissn=1872-7743&rft.coden=MSMSD3&rft_id=info:doi/10.1016/j.mechmat.2007.11.003&rft_dat=%3Cproquest_cross%3E32498339%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32498339&rft_id=info:pmid/&rft_els_id=S0167663607001603&rfr_iscdi=true |