Influence of particle density on 3D size effects in the fracture of (numerical) concrete

In this paper, three-dimensional beam lattice models are extended and used for simulating size effects on strength of 3-point bending fracture experiments on concrete. At the meso-level concrete is schematized as a three-phase material, consisting of aggregate particles, cement matrix and the bond z...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanics of materials 2008-06, Vol.40 (6), p.470-486
Hauptverfasser: Man, Hau-Kit, van Mier, Jan G.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 486
container_issue 6
container_start_page 470
container_title Mechanics of materials
container_volume 40
creator Man, Hau-Kit
van Mier, Jan G.M.
description In this paper, three-dimensional beam lattice models are extended and used for simulating size effects on strength of 3-point bending fracture experiments on concrete. At the meso-level concrete is schematized as a three-phase material, consisting of aggregate particles, cement matrix and the bond zone, which separates these two phases. Displacement-controlled 3-point bending experiments are simulated varying the particle density P k ( P k = 0%, 15%, 35% and 55%) and the specimen size, which is scaled in all three dimensions in a range of 1:8 (volume range 1:512), containing between 15,703 and 7,448,373 lattice elements. The numerical analyses show particle density dependent scaling behaviour of strength. For very low (0%) and high (55%) particle density, scaling comes close to classical Weibull theory; for intermediate densities a significantly different power emerges caused by stable pre-critical crack growth leading to hardening.
doi_str_mv 10.1016/j.mechmat.2007.11.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32498339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167663607001603</els_id><sourcerecordid>32498339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-7535933f58d7ba4c8abec7701a5d3363fac053da5be415a32299112d60c1437a3</originalsourceid><addsrcrecordid>eNqFkEFv1DAQhS1EpS6Fn1DJFxAcEuxMHCcnhEqBSpV6KRI3yzsZq14lzmI7ldpfj7e74sppLt-bp_cxdilFLYXsPu_qmfBhtrluhNC1lLUQ8IptZK-bSusWXrNN4XTVddCdszcp7YQQalB6w37fBDetFJD44vjexuxxIj5SSD4_8SVw-MaTfyZOzhHmxH3g-YG4ixbzGl9iH8M6U_Rop08cl4CRMr1lZ85Oid6d7gX79f36_upndXv34-bq622FLXS50grUAOBUP-qtbbG3W0KthbRqBOjAWRQKRqu21EploWmGQcpm7ATKFrSFC_bh-Hcflz8rpWxmn5CmyQZa1mSgaYceYCigOoIYl5QiObOPfrbxyUhhDh7Nzpw8moNHI6UpHkvu_anAprKw7A7o079wIxrVl5LCfTlyVNY-eoomoT-IHX0s4sy4-P80_QVAc4q1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32498339</pqid></control><display><type>article</type><title>Influence of particle density on 3D size effects in the fracture of (numerical) concrete</title><source>Elsevier ScienceDirect Journals</source><creator>Man, Hau-Kit ; van Mier, Jan G.M.</creator><creatorcontrib>Man, Hau-Kit ; van Mier, Jan G.M.</creatorcontrib><description>In this paper, three-dimensional beam lattice models are extended and used for simulating size effects on strength of 3-point bending fracture experiments on concrete. At the meso-level concrete is schematized as a three-phase material, consisting of aggregate particles, cement matrix and the bond zone, which separates these two phases. Displacement-controlled 3-point bending experiments are simulated varying the particle density P k ( P k = 0%, 15%, 35% and 55%) and the specimen size, which is scaled in all three dimensions in a range of 1:8 (volume range 1:512), containing between 15,703 and 7,448,373 lattice elements. The numerical analyses show particle density dependent scaling behaviour of strength. For very low (0%) and high (55%) particle density, scaling comes close to classical Weibull theory; for intermediate densities a significantly different power emerges caused by stable pre-critical crack growth leading to hardening.</description><identifier>ISSN: 0167-6636</identifier><identifier>EISSN: 1872-7743</identifier><identifier>DOI: 10.1016/j.mechmat.2007.11.003</identifier><identifier>CODEN: MSMSD3</identifier><language>eng</language><publisher>Lausanne: Elsevier Ltd</publisher><subject>3-Point bending ; 3D fracture scaling ; Applied sciences ; Building structure ; Buildings. Public works ; Concrete ; Concrete structure ; Construction (buildings and works) ; Exact sciences and technology ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Lattice model ; Numerical simulation ; Particle density ; Physics ; Size effects ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>Mechanics of materials, 2008-06, Vol.40 (6), p.470-486</ispartof><rights>2008 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-7535933f58d7ba4c8abec7701a5d3363fac053da5be415a32299112d60c1437a3</citedby><cites>FETCH-LOGICAL-c436t-7535933f58d7ba4c8abec7701a5d3363fac053da5be415a32299112d60c1437a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167663607001603$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20258324$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Man, Hau-Kit</creatorcontrib><creatorcontrib>van Mier, Jan G.M.</creatorcontrib><title>Influence of particle density on 3D size effects in the fracture of (numerical) concrete</title><title>Mechanics of materials</title><description>In this paper, three-dimensional beam lattice models are extended and used for simulating size effects on strength of 3-point bending fracture experiments on concrete. At the meso-level concrete is schematized as a three-phase material, consisting of aggregate particles, cement matrix and the bond zone, which separates these two phases. Displacement-controlled 3-point bending experiments are simulated varying the particle density P k ( P k = 0%, 15%, 35% and 55%) and the specimen size, which is scaled in all three dimensions in a range of 1:8 (volume range 1:512), containing between 15,703 and 7,448,373 lattice elements. The numerical analyses show particle density dependent scaling behaviour of strength. For very low (0%) and high (55%) particle density, scaling comes close to classical Weibull theory; for intermediate densities a significantly different power emerges caused by stable pre-critical crack growth leading to hardening.</description><subject>3-Point bending</subject><subject>3D fracture scaling</subject><subject>Applied sciences</subject><subject>Building structure</subject><subject>Buildings. Public works</subject><subject>Concrete</subject><subject>Concrete structure</subject><subject>Construction (buildings and works)</subject><subject>Exact sciences and technology</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Lattice model</subject><subject>Numerical simulation</subject><subject>Particle density</subject><subject>Physics</subject><subject>Size effects</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>0167-6636</issn><issn>1872-7743</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkEFv1DAQhS1EpS6Fn1DJFxAcEuxMHCcnhEqBSpV6KRI3yzsZq14lzmI7ldpfj7e74sppLt-bp_cxdilFLYXsPu_qmfBhtrluhNC1lLUQ8IptZK-bSusWXrNN4XTVddCdszcp7YQQalB6w37fBDetFJD44vjexuxxIj5SSD4_8SVw-MaTfyZOzhHmxH3g-YG4ixbzGl9iH8M6U_Rop08cl4CRMr1lZ85Oid6d7gX79f36_upndXv34-bq622FLXS50grUAOBUP-qtbbG3W0KthbRqBOjAWRQKRqu21EploWmGQcpm7ATKFrSFC_bh-Hcflz8rpWxmn5CmyQZa1mSgaYceYCigOoIYl5QiObOPfrbxyUhhDh7Nzpw8moNHI6UpHkvu_anAprKw7A7o079wIxrVl5LCfTlyVNY-eoomoT-IHX0s4sy4-P80_QVAc4q1</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Man, Hau-Kit</creator><creator>van Mier, Jan G.M.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20080601</creationdate><title>Influence of particle density on 3D size effects in the fracture of (numerical) concrete</title><author>Man, Hau-Kit ; van Mier, Jan G.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-7535933f58d7ba4c8abec7701a5d3363fac053da5be415a32299112d60c1437a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>3-Point bending</topic><topic>3D fracture scaling</topic><topic>Applied sciences</topic><topic>Building structure</topic><topic>Buildings. Public works</topic><topic>Concrete</topic><topic>Concrete structure</topic><topic>Construction (buildings and works)</topic><topic>Exact sciences and technology</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Lattice model</topic><topic>Numerical simulation</topic><topic>Particle density</topic><topic>Physics</topic><topic>Size effects</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Man, Hau-Kit</creatorcontrib><creatorcontrib>van Mier, Jan G.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Mechanics of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Man, Hau-Kit</au><au>van Mier, Jan G.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of particle density on 3D size effects in the fracture of (numerical) concrete</atitle><jtitle>Mechanics of materials</jtitle><date>2008-06-01</date><risdate>2008</risdate><volume>40</volume><issue>6</issue><spage>470</spage><epage>486</epage><pages>470-486</pages><issn>0167-6636</issn><eissn>1872-7743</eissn><coden>MSMSD3</coden><abstract>In this paper, three-dimensional beam lattice models are extended and used for simulating size effects on strength of 3-point bending fracture experiments on concrete. At the meso-level concrete is schematized as a three-phase material, consisting of aggregate particles, cement matrix and the bond zone, which separates these two phases. Displacement-controlled 3-point bending experiments are simulated varying the particle density P k ( P k = 0%, 15%, 35% and 55%) and the specimen size, which is scaled in all three dimensions in a range of 1:8 (volume range 1:512), containing between 15,703 and 7,448,373 lattice elements. The numerical analyses show particle density dependent scaling behaviour of strength. For very low (0%) and high (55%) particle density, scaling comes close to classical Weibull theory; for intermediate densities a significantly different power emerges caused by stable pre-critical crack growth leading to hardening.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.mechmat.2007.11.003</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-6636
ispartof Mechanics of materials, 2008-06, Vol.40 (6), p.470-486
issn 0167-6636
1872-7743
language eng
recordid cdi_proquest_miscellaneous_32498339
source Elsevier ScienceDirect Journals
subjects 3-Point bending
3D fracture scaling
Applied sciences
Building structure
Buildings. Public works
Concrete
Concrete structure
Construction (buildings and works)
Exact sciences and technology
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
Lattice model
Numerical simulation
Particle density
Physics
Size effects
Solid mechanics
Structural and continuum mechanics
title Influence of particle density on 3D size effects in the fracture of (numerical) concrete
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A31%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20particle%20density%20on%203D%20size%20effects%20in%20the%20fracture%20of%20(numerical)%20concrete&rft.jtitle=Mechanics%20of%20materials&rft.au=Man,%20Hau-Kit&rft.date=2008-06-01&rft.volume=40&rft.issue=6&rft.spage=470&rft.epage=486&rft.pages=470-486&rft.issn=0167-6636&rft.eissn=1872-7743&rft.coden=MSMSD3&rft_id=info:doi/10.1016/j.mechmat.2007.11.003&rft_dat=%3Cproquest_cross%3E32498339%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32498339&rft_id=info:pmid/&rft_els_id=S0167663607001603&rfr_iscdi=true