Influence of particle density on 3D size effects in the fracture of (numerical) concrete

In this paper, three-dimensional beam lattice models are extended and used for simulating size effects on strength of 3-point bending fracture experiments on concrete. At the meso-level concrete is schematized as a three-phase material, consisting of aggregate particles, cement matrix and the bond z...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanics of materials 2008-06, Vol.40 (6), p.470-486
Hauptverfasser: Man, Hau-Kit, van Mier, Jan G.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, three-dimensional beam lattice models are extended and used for simulating size effects on strength of 3-point bending fracture experiments on concrete. At the meso-level concrete is schematized as a three-phase material, consisting of aggregate particles, cement matrix and the bond zone, which separates these two phases. Displacement-controlled 3-point bending experiments are simulated varying the particle density P k ( P k = 0%, 15%, 35% and 55%) and the specimen size, which is scaled in all three dimensions in a range of 1:8 (volume range 1:512), containing between 15,703 and 7,448,373 lattice elements. The numerical analyses show particle density dependent scaling behaviour of strength. For very low (0%) and high (55%) particle density, scaling comes close to classical Weibull theory; for intermediate densities a significantly different power emerges caused by stable pre-critical crack growth leading to hardening.
ISSN:0167-6636
1872-7743
DOI:10.1016/j.mechmat.2007.11.003