Improved interface conditions for a non-overlapping domain decomposition of a non-convex polygonal domain
We propose a local improvement of domain decomposition methods which fits with the singularities occurring in the solutions of elliptic equations in polygonal domains. This short presentation focuses on a model elliptic problem with the decomposition of a non-convex polygonal domain into convex poly...
Gespeichert in:
Veröffentlicht in: | Comptes rendus. Mathématique 2006-06, Vol.342 (11), p.883-886 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a local improvement of domain decomposition methods which fits with the singularities occurring in the solutions of elliptic equations in polygonal domains. This short presentation focuses on a model elliptic problem with the decomposition of a non-convex polygonal domain into convex polygonal subdomains. After explaining the strategy and the theoretical design of adapted interface conditions at the corner, we present numerical experiments which show that these new interface conditions satisfy some optimality properties.
To cite this article: C. Chniti et al., C. R. Acad. Sci. Paris, Ser. I 342 (2006).
Dans cette Note nous proposons une amélioration locale des méthodes de décomposition de domaine adaptée aux singularités présentes dans les solutions de problèmes elliptiques dans des domaines polygonaux. Cette courte présentation se limite à un problème elliptique modèle où un domaine polygonal non convexe est décomposé en sous-domaines convexes. Après avoir brièvement présenté la stratégie et la détermination théorique des conditions d'interface adaptées au coin, nous présentons des résultats numériques qui montrent que ces nouvelles conditions d'interface vérifient des propriétés d'optimalité.
Pour citer cet article : C. Chniti et al., C. R. Acad. Sci. Paris, Ser. I 342 (2006). |
---|---|
ISSN: | 1631-073X 1778-3569 1778-3569 |
DOI: | 10.1016/j.crma.2006.03.024 |