A Hardy type estimate with exponential weights
In this paper we consider operators of the form H= λ(−i∇)+ V with λ analytic in a strip having some specific growth conditions at infinity and prove Hardy type estimates in L 2( R n) with exponential weights. In fact we extend our previous results [5] from bounded analytic functions on a strip to an...
Gespeichert in:
Veröffentlicht in: | Comptes rendus. Mathématique 2002-12, Vol.335 (12), p.1023-1027 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1027 |
---|---|
container_issue | 12 |
container_start_page | 1023 |
container_title | Comptes rendus. Mathématique |
container_volume | 335 |
creator | Mǎntoiu, Marius Purice, Radu |
description | In this paper we consider operators of the form
H=
λ(−i∇)+
V with
λ analytic in a strip having some specific growth conditions at infinity and prove Hardy type estimates in
L
2(
R
n)
with exponential weights. In fact we extend our previous results [5] from bounded analytic functions on a strip to analytic functions with polynomial growth in that strip.
To cite this article: M. Mǎntoiu, R. Purice, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 1023–1027.
Pour des opérateurs de la forme
H=
λ(−i∇)+
V avec
λ une fonction analytique dans une bande et à croissance polynomielle à l'infini, nous démontrons une estimation du type de Hardy dans
L
2(
R
n)
, avec des poids exponentiels. En effet nous étendons nos résultats précedents [5] du cas des fonctions
λ analytiques bornées au cas à croissance polynomielle.
Pour citer cet article : M. Mǎntoiu, R. Purice, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 1023–1027. |
doi_str_mv | 10.1016/S1631-073X(02)02604-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32419359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1631073X02026043</els_id><sourcerecordid>32419359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-54ce1d7db38144d99d440a1e25df59fe2fe50fecba9cc5ec89966b97292f34803</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs_QZiNooupec0jKylFrVBwoYK7kCY3NjKdqUlq7b83fYhLV_cuvnPPPQehc4IHBJPy5pmUjOS4Ym9XmF5jWmKeswPUI1VV56woxWHaf5FjdBLCB046UYkeGgyzsfJmncX1AjII0c1VhGzl4iyD70XXQhudarIVuPdZDKfoyKomwNl-9tHr_d3LaJxPnh4eR8NJrhmvYl5wDcRUZspqwrkRwnCOFQFaGFsIC9RCgS3oqRJaF6BrIcpyKioqqGW8xqyPLnd3F777XKa35NwFDU2jWuiWQTLKiWCFSGCxA7XvQvBg5cKnCH4tCZabduS2HbmJLjGV23YkS7qLvYEKWjXWq1a78CfmTKTX68Td7jhIab8ceBm0g1aDcR50lKZz_zj9ADr7eOc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32419359</pqid></control><display><type>article</type><title>A Hardy type estimate with exponential weights</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Mǎntoiu, Marius ; Purice, Radu</creator><creatorcontrib>Mǎntoiu, Marius ; Purice, Radu</creatorcontrib><description>In this paper we consider operators of the form
H=
λ(−i∇)+
V with
λ analytic in a strip having some specific growth conditions at infinity and prove Hardy type estimates in
L
2(
R
n)
with exponential weights. In fact we extend our previous results [5] from bounded analytic functions on a strip to analytic functions with polynomial growth in that strip.
To cite this article: M. Mǎntoiu, R. Purice, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 1023–1027.
Pour des opérateurs de la forme
H=
λ(−i∇)+
V avec
λ une fonction analytique dans une bande et à croissance polynomielle à l'infini, nous démontrons une estimation du type de Hardy dans
L
2(
R
n)
, avec des poids exponentiels. En effet nous étendons nos résultats précedents [5] du cas des fonctions
λ analytiques bornées au cas à croissance polynomielle.
Pour citer cet article : M. Mǎntoiu, R. Purice, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 1023–1027.</description><identifier>ISSN: 1631-073X</identifier><identifier>EISSN: 1778-3569</identifier><identifier>DOI: 10.1016/S1631-073X(02)02604-3</identifier><language>eng</language><publisher>Paris: Elsevier SAS</publisher><subject>Exact sciences and technology ; Mathematical analysis ; Mathematics ; Partial differential equations ; Sciences and techniques of general use</subject><ispartof>Comptes rendus. Mathématique, 2002-12, Vol.335 (12), p.1023-1027</ispartof><rights>2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-54ce1d7db38144d99d440a1e25df59fe2fe50fecba9cc5ec89966b97292f34803</citedby><cites>FETCH-LOGICAL-c347t-54ce1d7db38144d99d440a1e25df59fe2fe50fecba9cc5ec89966b97292f34803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1631-073X(02)02604-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14398148$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mǎntoiu, Marius</creatorcontrib><creatorcontrib>Purice, Radu</creatorcontrib><title>A Hardy type estimate with exponential weights</title><title>Comptes rendus. Mathématique</title><description>In this paper we consider operators of the form
H=
λ(−i∇)+
V with
λ analytic in a strip having some specific growth conditions at infinity and prove Hardy type estimates in
L
2(
R
n)
with exponential weights. In fact we extend our previous results [5] from bounded analytic functions on a strip to analytic functions with polynomial growth in that strip.
To cite this article: M. Mǎntoiu, R. Purice, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 1023–1027.
Pour des opérateurs de la forme
H=
λ(−i∇)+
V avec
λ une fonction analytique dans une bande et à croissance polynomielle à l'infini, nous démontrons une estimation du type de Hardy dans
L
2(
R
n)
, avec des poids exponentiels. En effet nous étendons nos résultats précedents [5] du cas des fonctions
λ analytiques bornées au cas à croissance polynomielle.
Pour citer cet article : M. Mǎntoiu, R. Purice, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 1023–1027.</description><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><issn>1631-073X</issn><issn>1778-3569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKs_QZiNooupec0jKylFrVBwoYK7kCY3NjKdqUlq7b83fYhLV_cuvnPPPQehc4IHBJPy5pmUjOS4Ym9XmF5jWmKeswPUI1VV56woxWHaf5FjdBLCB046UYkeGgyzsfJmncX1AjII0c1VhGzl4iyD70XXQhudarIVuPdZDKfoyKomwNl-9tHr_d3LaJxPnh4eR8NJrhmvYl5wDcRUZspqwrkRwnCOFQFaGFsIC9RCgS3oqRJaF6BrIcpyKioqqGW8xqyPLnd3F777XKa35NwFDU2jWuiWQTLKiWCFSGCxA7XvQvBg5cKnCH4tCZabduS2HbmJLjGV23YkS7qLvYEKWjXWq1a78CfmTKTX68Td7jhIab8ceBm0g1aDcR50lKZz_zj9ADr7eOc</recordid><startdate>20021215</startdate><enddate>20021215</enddate><creator>Mǎntoiu, Marius</creator><creator>Purice, Radu</creator><general>Elsevier SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20021215</creationdate><title>A Hardy type estimate with exponential weights</title><author>Mǎntoiu, Marius ; Purice, Radu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-54ce1d7db38144d99d440a1e25df59fe2fe50fecba9cc5ec89966b97292f34803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mǎntoiu, Marius</creatorcontrib><creatorcontrib>Purice, Radu</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Comptes rendus. Mathématique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mǎntoiu, Marius</au><au>Purice, Radu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hardy type estimate with exponential weights</atitle><jtitle>Comptes rendus. Mathématique</jtitle><date>2002-12-15</date><risdate>2002</risdate><volume>335</volume><issue>12</issue><spage>1023</spage><epage>1027</epage><pages>1023-1027</pages><issn>1631-073X</issn><eissn>1778-3569</eissn><abstract>In this paper we consider operators of the form
H=
λ(−i∇)+
V with
λ analytic in a strip having some specific growth conditions at infinity and prove Hardy type estimates in
L
2(
R
n)
with exponential weights. In fact we extend our previous results [5] from bounded analytic functions on a strip to analytic functions with polynomial growth in that strip.
To cite this article: M. Mǎntoiu, R. Purice, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 1023–1027.
Pour des opérateurs de la forme
H=
λ(−i∇)+
V avec
λ une fonction analytique dans une bande et à croissance polynomielle à l'infini, nous démontrons une estimation du type de Hardy dans
L
2(
R
n)
, avec des poids exponentiels. En effet nous étendons nos résultats précedents [5] du cas des fonctions
λ analytiques bornées au cas à croissance polynomielle.
Pour citer cet article : M. Mǎntoiu, R. Purice, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 1023–1027.</abstract><cop>Paris</cop><pub>Elsevier SAS</pub><doi>10.1016/S1631-073X(02)02604-3</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1631-073X |
ispartof | Comptes rendus. Mathématique, 2002-12, Vol.335 (12), p.1023-1027 |
issn | 1631-073X 1778-3569 |
language | eng |
recordid | cdi_proquest_miscellaneous_32419359 |
source | ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals |
subjects | Exact sciences and technology Mathematical analysis Mathematics Partial differential equations Sciences and techniques of general use |
title | A Hardy type estimate with exponential weights |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A03%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hardy%20type%20estimate%20with%20exponential%20weights&rft.jtitle=Comptes%20rendus.%20Math%C3%A9matique&rft.au=M%C7%8Entoiu,%20Marius&rft.date=2002-12-15&rft.volume=335&rft.issue=12&rft.spage=1023&rft.epage=1027&rft.pages=1023-1027&rft.issn=1631-073X&rft.eissn=1778-3569&rft_id=info:doi/10.1016/S1631-073X(02)02604-3&rft_dat=%3Cproquest_cross%3E32419359%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32419359&rft_id=info:pmid/&rft_els_id=S1631073X02026043&rfr_iscdi=true |