Hölder conditions for the local times of multiscale fractional Brownian motion
We establish estimates for the local and uniform moduli of continuity of local times of multiscale fractional Brownian motion { X ρ ( t ) , t ⩾ 0 } . We also give Chung's form of the law of the iterated logarithm for X ρ , this proves that the results on local times are sharp up to multiplicati...
Gespeichert in:
Veröffentlicht in: | Comptes rendus. Mathématique 2006-10, Vol.343 (8), p.515-518 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish estimates for the local and uniform moduli of continuity of local times of multiscale fractional Brownian motion
{
X
ρ
(
t
)
,
t
⩾
0
}
. We also give Chung's form of the law of the iterated logarithm for
X
ρ
, this proves that the results on local times are sharp up to multiplicative constant.
To cite this article: R. Guerbaz, C. R. Acad. Sci. Paris, Ser. I 343 (2006).
On étudie dans cette note les lois du logarithme itéré du temps local du mouvement Brownien fractionnaire à multi-échelle
{
X
ρ
(
t
)
,
t
⩾
0
}
. On donne aussi la loi du logarithm itéré de type Chung pour
X
ρ
, ceci implique que les résultats concernant le temps local sont optimales.
Pour citer cet article : R. Guerbaz, C. R. Acad. Sci. Paris, Ser. I 343 (2006). |
---|---|
ISSN: | 1631-073X 1778-3569 1778-3569 |
DOI: | 10.1016/j.crma.2006.09.026 |