Gradient computation in a nonlinear inverse problem

This paper deals with a nonlinear inverse problem to determine the Neumann condition on the boundary Γ L⊂∂Ω , from measurements in the domain Ω. This condition is characterised by the width of Γ L and by the constant value of the flux on this boundary. The direct problem is the Laplacian problem cor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comptes rendus. Mathématique 2003-04, Vol.336 (8), p.691-696
Hauptverfasser: Calugaru, Dan-Gabriel, Crolet, Jean-Marie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 696
container_issue 8
container_start_page 691
container_title Comptes rendus. Mathématique
container_volume 336
creator Calugaru, Dan-Gabriel
Crolet, Jean-Marie
description This paper deals with a nonlinear inverse problem to determine the Neumann condition on the boundary Γ L⊂∂Ω , from measurements in the domain Ω. This condition is characterised by the width of Γ L and by the constant value of the flux on this boundary. The direct problem is the Laplacian problem corresponding to flow modelling in a confined aquifer and Γ L corresponds to the contact with a fault. Some properties of associated direct application are given and in particular, we show how one can compute its gradient by some explicit formulas. To cite this article: D.-G. Calugaru, J.-M. Crolet, C. R. Acad. Sci. Paris, Ser. I 336 (2003). On s'intéresse à un problème inverse non linéaire d'identification de la condition Neumann sur la frontière Γ L⊂∂Ω , à partir de mesures dans le domaine Ω. Cette condition est caractérisée par la largeur de Γ L et par la valeur constante du flux sur cette frontière. Le problème direct est celui du laplacien et correspond à la modélisation de l'écoulement dans un aquifère captif en contact avec une faille. On étudie quelques propriétés de l'application directe associée et, en particulier, nous donnons des formules explicites pour calculer son gradient. Pour citer cet article : D.-G. Calugaru, J.-M. Crolet, C. R. Acad. Sci. Paris, Ser. I 336 (2003).
doi_str_mv 10.1016/S1631-073X(03)00130-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32375487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1631073X03001304</els_id><sourcerecordid>32375487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-270d2064bfac7135df438b172084a38b98a833e1ba18aa72aecd76692cca5b503</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BKEXRQ_VpNMm7Ulk0VVY8KCCtzBNpxBp0zXpLvjtzf4Rj57mDfxm3sxj7FzwG8GFvH0VEkTKFXxccbjmXABP8wM2EUqVKRSyOoz6FzlmJyF8RkhWqpowmHtsLLkxMUO_XI042sEl1iWYuMF11hH62K7JB0qWfqg76k_ZUYtdoLN9nbL3x4e32VO6eJk_z-4XqcmqYkwzxZuMy7xu0SgBRdPmUNZCZbzMMaqqxBKARI2iRFQZkmmUlFVmDBZ1wWHKLnd7o-_XisKoexsMdR06GlZBQwaqyEsVwWIHGj-E4KnVS2979N9acL2JSG8j0pv_NQe9jUjnce5ib4DBYNd6dMaGv-FcASi5OeRux1H8dm3J62BiZoYa68mMuhnsP04_yZR6Ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32375487</pqid></control><display><type>article</type><title>Gradient computation in a nonlinear inverse problem</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Calugaru, Dan-Gabriel ; Crolet, Jean-Marie</creator><creatorcontrib>Calugaru, Dan-Gabriel ; Crolet, Jean-Marie</creatorcontrib><description>This paper deals with a nonlinear inverse problem to determine the Neumann condition on the boundary Γ L⊂∂Ω , from measurements in the domain Ω. This condition is characterised by the width of Γ L and by the constant value of the flux on this boundary. The direct problem is the Laplacian problem corresponding to flow modelling in a confined aquifer and Γ L corresponds to the contact with a fault. Some properties of associated direct application are given and in particular, we show how one can compute its gradient by some explicit formulas. To cite this article: D.-G. Calugaru, J.-M. Crolet, C. R. Acad. Sci. Paris, Ser. I 336 (2003). On s'intéresse à un problème inverse non linéaire d'identification de la condition Neumann sur la frontière Γ L⊂∂Ω , à partir de mesures dans le domaine Ω. Cette condition est caractérisée par la largeur de Γ L et par la valeur constante du flux sur cette frontière. Le problème direct est celui du laplacien et correspond à la modélisation de l'écoulement dans un aquifère captif en contact avec une faille. On étudie quelques propriétés de l'application directe associée et, en particulier, nous donnons des formules explicites pour calculer son gradient. Pour citer cet article : D.-G. Calugaru, J.-M. Crolet, C. R. Acad. Sci. Paris, Ser. I 336 (2003).</description><identifier>ISSN: 1631-073X</identifier><identifier>EISSN: 1778-3569</identifier><identifier>DOI: 10.1016/S1631-073X(03)00130-4</identifier><language>eng</language><publisher>Paris: Elsevier SAS</publisher><subject>Computational methods in fluid dynamics ; Earth sciences ; Earth, ocean, space ; Earthquakes, seismology ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Internal geophysics ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations, boundary value problems ; Physics ; Sciences and techniques of general use</subject><ispartof>Comptes rendus. Mathématique, 2003-04, Vol.336 (8), p.691-696</ispartof><rights>2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c295t-270d2064bfac7135df438b172084a38b98a833e1ba18aa72aecd76692cca5b503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1631-073X(03)00130-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14733760$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Calugaru, Dan-Gabriel</creatorcontrib><creatorcontrib>Crolet, Jean-Marie</creatorcontrib><title>Gradient computation in a nonlinear inverse problem</title><title>Comptes rendus. Mathématique</title><description>This paper deals with a nonlinear inverse problem to determine the Neumann condition on the boundary Γ L⊂∂Ω , from measurements in the domain Ω. This condition is characterised by the width of Γ L and by the constant value of the flux on this boundary. The direct problem is the Laplacian problem corresponding to flow modelling in a confined aquifer and Γ L corresponds to the contact with a fault. Some properties of associated direct application are given and in particular, we show how one can compute its gradient by some explicit formulas. To cite this article: D.-G. Calugaru, J.-M. Crolet, C. R. Acad. Sci. Paris, Ser. I 336 (2003). On s'intéresse à un problème inverse non linéaire d'identification de la condition Neumann sur la frontière Γ L⊂∂Ω , à partir de mesures dans le domaine Ω. Cette condition est caractérisée par la largeur de Γ L et par la valeur constante du flux sur cette frontière. Le problème direct est celui du laplacien et correspond à la modélisation de l'écoulement dans un aquifère captif en contact avec une faille. On étudie quelques propriétés de l'application directe associée et, en particulier, nous donnons des formules explicites pour calculer son gradient. Pour citer cet article : D.-G. Calugaru, J.-M. Crolet, C. R. Acad. Sci. Paris, Ser. I 336 (2003).</description><subject>Computational methods in fluid dynamics</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Earthquakes, seismology</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Internal geophysics</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations, boundary value problems</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><issn>1631-073X</issn><issn>1778-3569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BKEXRQ_VpNMm7Ulk0VVY8KCCtzBNpxBp0zXpLvjtzf4Rj57mDfxm3sxj7FzwG8GFvH0VEkTKFXxccbjmXABP8wM2EUqVKRSyOoz6FzlmJyF8RkhWqpowmHtsLLkxMUO_XI042sEl1iWYuMF11hH62K7JB0qWfqg76k_ZUYtdoLN9nbL3x4e32VO6eJk_z-4XqcmqYkwzxZuMy7xu0SgBRdPmUNZCZbzMMaqqxBKARI2iRFQZkmmUlFVmDBZ1wWHKLnd7o-_XisKoexsMdR06GlZBQwaqyEsVwWIHGj-E4KnVS2979N9acL2JSG8j0pv_NQe9jUjnce5ib4DBYNd6dMaGv-FcASi5OeRux1H8dm3J62BiZoYa68mMuhnsP04_yZR6Ww</recordid><startdate>20030415</startdate><enddate>20030415</enddate><creator>Calugaru, Dan-Gabriel</creator><creator>Crolet, Jean-Marie</creator><general>Elsevier SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20030415</creationdate><title>Gradient computation in a nonlinear inverse problem</title><author>Calugaru, Dan-Gabriel ; Crolet, Jean-Marie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-270d2064bfac7135df438b172084a38b98a833e1ba18aa72aecd76692cca5b503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Computational methods in fluid dynamics</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Earthquakes, seismology</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Internal geophysics</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations, boundary value problems</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calugaru, Dan-Gabriel</creatorcontrib><creatorcontrib>Crolet, Jean-Marie</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Comptes rendus. Mathématique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calugaru, Dan-Gabriel</au><au>Crolet, Jean-Marie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gradient computation in a nonlinear inverse problem</atitle><jtitle>Comptes rendus. Mathématique</jtitle><date>2003-04-15</date><risdate>2003</risdate><volume>336</volume><issue>8</issue><spage>691</spage><epage>696</epage><pages>691-696</pages><issn>1631-073X</issn><eissn>1778-3569</eissn><abstract>This paper deals with a nonlinear inverse problem to determine the Neumann condition on the boundary Γ L⊂∂Ω , from measurements in the domain Ω. This condition is characterised by the width of Γ L and by the constant value of the flux on this boundary. The direct problem is the Laplacian problem corresponding to flow modelling in a confined aquifer and Γ L corresponds to the contact with a fault. Some properties of associated direct application are given and in particular, we show how one can compute its gradient by some explicit formulas. To cite this article: D.-G. Calugaru, J.-M. Crolet, C. R. Acad. Sci. Paris, Ser. I 336 (2003). On s'intéresse à un problème inverse non linéaire d'identification de la condition Neumann sur la frontière Γ L⊂∂Ω , à partir de mesures dans le domaine Ω. Cette condition est caractérisée par la largeur de Γ L et par la valeur constante du flux sur cette frontière. Le problème direct est celui du laplacien et correspond à la modélisation de l'écoulement dans un aquifère captif en contact avec une faille. On étudie quelques propriétés de l'application directe associée et, en particulier, nous donnons des formules explicites pour calculer son gradient. Pour citer cet article : D.-G. Calugaru, J.-M. Crolet, C. R. Acad. Sci. Paris, Ser. I 336 (2003).</abstract><cop>Paris</cop><pub>Elsevier SAS</pub><doi>10.1016/S1631-073X(03)00130-4</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1631-073X
ispartof Comptes rendus. Mathématique, 2003-04, Vol.336 (8), p.691-696
issn 1631-073X
1778-3569
language eng
recordid cdi_proquest_miscellaneous_32375487
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Computational methods in fluid dynamics
Earth sciences
Earth, ocean, space
Earthquakes, seismology
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Internal geophysics
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Partial differential equations, boundary value problems
Physics
Sciences and techniques of general use
title Gradient computation in a nonlinear inverse problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A57%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gradient%20computation%20in%20a%20nonlinear%20inverse%20problem&rft.jtitle=Comptes%20rendus.%20Math%C3%A9matique&rft.au=Calugaru,%20Dan-Gabriel&rft.date=2003-04-15&rft.volume=336&rft.issue=8&rft.spage=691&rft.epage=696&rft.pages=691-696&rft.issn=1631-073X&rft.eissn=1778-3569&rft_id=info:doi/10.1016/S1631-073X(03)00130-4&rft_dat=%3Cproquest_cross%3E32375487%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32375487&rft_id=info:pmid/&rft_els_id=S1631073X03001304&rfr_iscdi=true