Gradient computation in a nonlinear inverse problem
This paper deals with a nonlinear inverse problem to determine the Neumann condition on the boundary Γ L⊂∂Ω , from measurements in the domain Ω. This condition is characterised by the width of Γ L and by the constant value of the flux on this boundary. The direct problem is the Laplacian problem cor...
Gespeichert in:
Veröffentlicht in: | Comptes rendus. Mathématique 2003-04, Vol.336 (8), p.691-696 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 696 |
---|---|
container_issue | 8 |
container_start_page | 691 |
container_title | Comptes rendus. Mathématique |
container_volume | 336 |
creator | Calugaru, Dan-Gabriel Crolet, Jean-Marie |
description | This paper deals with a nonlinear inverse problem to determine the Neumann condition on the boundary
Γ
L⊂∂Ω
, from measurements in the domain
Ω. This condition is characterised by the width of
Γ
L
and by the constant value of the flux on this boundary. The direct problem is the Laplacian problem corresponding to flow modelling in a confined aquifer and
Γ
L
corresponds to the contact with a fault. Some properties of associated direct application are given and in particular, we show how one can compute its gradient by some explicit formulas.
To cite this article: D.-G. Calugaru, J.-M. Crolet, C. R. Acad. Sci. Paris, Ser. I 336 (2003).
On s'intéresse à un problème inverse non linéaire d'identification de la condition Neumann sur la frontière
Γ
L⊂∂Ω
, à partir de mesures dans le domaine
Ω. Cette condition est caractérisée par la largeur de
Γ
L
et par la valeur constante du flux sur cette frontière. Le problème direct est celui du laplacien et correspond à la modélisation de l'écoulement dans un aquifère captif en contact avec une faille. On étudie quelques propriétés de l'application directe associée et, en particulier, nous donnons des formules explicites pour calculer son gradient.
Pour citer cet article : D.-G. Calugaru, J.-M. Crolet, C. R. Acad. Sci. Paris, Ser. I 336 (2003). |
doi_str_mv | 10.1016/S1631-073X(03)00130-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32375487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1631073X03001304</els_id><sourcerecordid>32375487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-270d2064bfac7135df438b172084a38b98a833e1ba18aa72aecd76692cca5b503</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BKEXRQ_VpNMm7Ulk0VVY8KCCtzBNpxBp0zXpLvjtzf4Rj57mDfxm3sxj7FzwG8GFvH0VEkTKFXxccbjmXABP8wM2EUqVKRSyOoz6FzlmJyF8RkhWqpowmHtsLLkxMUO_XI042sEl1iWYuMF11hH62K7JB0qWfqg76k_ZUYtdoLN9nbL3x4e32VO6eJk_z-4XqcmqYkwzxZuMy7xu0SgBRdPmUNZCZbzMMaqqxBKARI2iRFQZkmmUlFVmDBZ1wWHKLnd7o-_XisKoexsMdR06GlZBQwaqyEsVwWIHGj-E4KnVS2979N9acL2JSG8j0pv_NQe9jUjnce5ib4DBYNd6dMaGv-FcASi5OeRux1H8dm3J62BiZoYa68mMuhnsP04_yZR6Ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32375487</pqid></control><display><type>article</type><title>Gradient computation in a nonlinear inverse problem</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Calugaru, Dan-Gabriel ; Crolet, Jean-Marie</creator><creatorcontrib>Calugaru, Dan-Gabriel ; Crolet, Jean-Marie</creatorcontrib><description>This paper deals with a nonlinear inverse problem to determine the Neumann condition on the boundary
Γ
L⊂∂Ω
, from measurements in the domain
Ω. This condition is characterised by the width of
Γ
L
and by the constant value of the flux on this boundary. The direct problem is the Laplacian problem corresponding to flow modelling in a confined aquifer and
Γ
L
corresponds to the contact with a fault. Some properties of associated direct application are given and in particular, we show how one can compute its gradient by some explicit formulas.
To cite this article: D.-G. Calugaru, J.-M. Crolet, C. R. Acad. Sci. Paris, Ser. I 336 (2003).
On s'intéresse à un problème inverse non linéaire d'identification de la condition Neumann sur la frontière
Γ
L⊂∂Ω
, à partir de mesures dans le domaine
Ω. Cette condition est caractérisée par la largeur de
Γ
L
et par la valeur constante du flux sur cette frontière. Le problème direct est celui du laplacien et correspond à la modélisation de l'écoulement dans un aquifère captif en contact avec une faille. On étudie quelques propriétés de l'application directe associée et, en particulier, nous donnons des formules explicites pour calculer son gradient.
Pour citer cet article : D.-G. Calugaru, J.-M. Crolet, C. R. Acad. Sci. Paris, Ser. I 336 (2003).</description><identifier>ISSN: 1631-073X</identifier><identifier>EISSN: 1778-3569</identifier><identifier>DOI: 10.1016/S1631-073X(03)00130-4</identifier><language>eng</language><publisher>Paris: Elsevier SAS</publisher><subject>Computational methods in fluid dynamics ; Earth sciences ; Earth, ocean, space ; Earthquakes, seismology ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Internal geophysics ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations, boundary value problems ; Physics ; Sciences and techniques of general use</subject><ispartof>Comptes rendus. Mathématique, 2003-04, Vol.336 (8), p.691-696</ispartof><rights>2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c295t-270d2064bfac7135df438b172084a38b98a833e1ba18aa72aecd76692cca5b503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1631-073X(03)00130-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14733760$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Calugaru, Dan-Gabriel</creatorcontrib><creatorcontrib>Crolet, Jean-Marie</creatorcontrib><title>Gradient computation in a nonlinear inverse problem</title><title>Comptes rendus. Mathématique</title><description>This paper deals with a nonlinear inverse problem to determine the Neumann condition on the boundary
Γ
L⊂∂Ω
, from measurements in the domain
Ω. This condition is characterised by the width of
Γ
L
and by the constant value of the flux on this boundary. The direct problem is the Laplacian problem corresponding to flow modelling in a confined aquifer and
Γ
L
corresponds to the contact with a fault. Some properties of associated direct application are given and in particular, we show how one can compute its gradient by some explicit formulas.
To cite this article: D.-G. Calugaru, J.-M. Crolet, C. R. Acad. Sci. Paris, Ser. I 336 (2003).
On s'intéresse à un problème inverse non linéaire d'identification de la condition Neumann sur la frontière
Γ
L⊂∂Ω
, à partir de mesures dans le domaine
Ω. Cette condition est caractérisée par la largeur de
Γ
L
et par la valeur constante du flux sur cette frontière. Le problème direct est celui du laplacien et correspond à la modélisation de l'écoulement dans un aquifère captif en contact avec une faille. On étudie quelques propriétés de l'application directe associée et, en particulier, nous donnons des formules explicites pour calculer son gradient.
Pour citer cet article : D.-G. Calugaru, J.-M. Crolet, C. R. Acad. Sci. Paris, Ser. I 336 (2003).</description><subject>Computational methods in fluid dynamics</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Earthquakes, seismology</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Internal geophysics</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations, boundary value problems</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><issn>1631-073X</issn><issn>1778-3569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BKEXRQ_VpNMm7Ulk0VVY8KCCtzBNpxBp0zXpLvjtzf4Rj57mDfxm3sxj7FzwG8GFvH0VEkTKFXxccbjmXABP8wM2EUqVKRSyOoz6FzlmJyF8RkhWqpowmHtsLLkxMUO_XI042sEl1iWYuMF11hH62K7JB0qWfqg76k_ZUYtdoLN9nbL3x4e32VO6eJk_z-4XqcmqYkwzxZuMy7xu0SgBRdPmUNZCZbzMMaqqxBKARI2iRFQZkmmUlFVmDBZ1wWHKLnd7o-_XisKoexsMdR06GlZBQwaqyEsVwWIHGj-E4KnVS2979N9acL2JSG8j0pv_NQe9jUjnce5ib4DBYNd6dMaGv-FcASi5OeRux1H8dm3J62BiZoYa68mMuhnsP04_yZR6Ww</recordid><startdate>20030415</startdate><enddate>20030415</enddate><creator>Calugaru, Dan-Gabriel</creator><creator>Crolet, Jean-Marie</creator><general>Elsevier SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20030415</creationdate><title>Gradient computation in a nonlinear inverse problem</title><author>Calugaru, Dan-Gabriel ; Crolet, Jean-Marie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-270d2064bfac7135df438b172084a38b98a833e1ba18aa72aecd76692cca5b503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Computational methods in fluid dynamics</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Earthquakes, seismology</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Internal geophysics</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations, boundary value problems</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calugaru, Dan-Gabriel</creatorcontrib><creatorcontrib>Crolet, Jean-Marie</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Comptes rendus. Mathématique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calugaru, Dan-Gabriel</au><au>Crolet, Jean-Marie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gradient computation in a nonlinear inverse problem</atitle><jtitle>Comptes rendus. Mathématique</jtitle><date>2003-04-15</date><risdate>2003</risdate><volume>336</volume><issue>8</issue><spage>691</spage><epage>696</epage><pages>691-696</pages><issn>1631-073X</issn><eissn>1778-3569</eissn><abstract>This paper deals with a nonlinear inverse problem to determine the Neumann condition on the boundary
Γ
L⊂∂Ω
, from measurements in the domain
Ω. This condition is characterised by the width of
Γ
L
and by the constant value of the flux on this boundary. The direct problem is the Laplacian problem corresponding to flow modelling in a confined aquifer and
Γ
L
corresponds to the contact with a fault. Some properties of associated direct application are given and in particular, we show how one can compute its gradient by some explicit formulas.
To cite this article: D.-G. Calugaru, J.-M. Crolet, C. R. Acad. Sci. Paris, Ser. I 336 (2003).
On s'intéresse à un problème inverse non linéaire d'identification de la condition Neumann sur la frontière
Γ
L⊂∂Ω
, à partir de mesures dans le domaine
Ω. Cette condition est caractérisée par la largeur de
Γ
L
et par la valeur constante du flux sur cette frontière. Le problème direct est celui du laplacien et correspond à la modélisation de l'écoulement dans un aquifère captif en contact avec une faille. On étudie quelques propriétés de l'application directe associée et, en particulier, nous donnons des formules explicites pour calculer son gradient.
Pour citer cet article : D.-G. Calugaru, J.-M. Crolet, C. R. Acad. Sci. Paris, Ser. I 336 (2003).</abstract><cop>Paris</cop><pub>Elsevier SAS</pub><doi>10.1016/S1631-073X(03)00130-4</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1631-073X |
ispartof | Comptes rendus. Mathématique, 2003-04, Vol.336 (8), p.691-696 |
issn | 1631-073X 1778-3569 |
language | eng |
recordid | cdi_proquest_miscellaneous_32375487 |
source | Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Computational methods in fluid dynamics Earth sciences Earth, ocean, space Earthquakes, seismology Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Internal geophysics Mathematics Numerical analysis Numerical analysis. Scientific computation Partial differential equations, boundary value problems Physics Sciences and techniques of general use |
title | Gradient computation in a nonlinear inverse problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A57%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gradient%20computation%20in%20a%20nonlinear%20inverse%20problem&rft.jtitle=Comptes%20rendus.%20Math%C3%A9matique&rft.au=Calugaru,%20Dan-Gabriel&rft.date=2003-04-15&rft.volume=336&rft.issue=8&rft.spage=691&rft.epage=696&rft.pages=691-696&rft.issn=1631-073X&rft.eissn=1778-3569&rft_id=info:doi/10.1016/S1631-073X(03)00130-4&rft_dat=%3Cproquest_cross%3E32375487%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32375487&rft_id=info:pmid/&rft_els_id=S1631073X03001304&rfr_iscdi=true |