Fabrication and Characterization of Self-Organized Nanostructured Organic Thin Films and Devices
Organic electronics (a cross point of organic chemistry, condensed matter physics, materials science, and device physics) [1, 2] has made remarkable technological breakthroughs for the last decade, enabling the realization of viable devices such as organic light-emitting diodes (OLEDs) [3, 4], organ...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Organic electronics (a cross point of organic chemistry, condensed matter physics, materials science, and device physics) [1, 2] has made remarkable technological breakthroughs for the last decade, enabling the realization of viable devices such as organic light-emitting diodes (OLEDs) [3, 4], organic field-effect transistors (OFETs) [5], organic solar cells [6] as well as memory circuits [7, 8]. Some products such as medium resolution emissive OLED displays [9, 10] are already commercially available and others are now in various stages of commercialization. On the other hand, nanoscale technology has clear advantages to be gained from exploiting self-organized growth, as it avoids the need for highly sophisticated patterning of surfaces with nanometersize objects. Ideally, in organic applications the functional properties can be obtained essentially in one self-assembled molecular layer, so that organic electronics in principle would offer a maximum degree of miniaturization. |
---|---|
ISSN: | 0933-033X |
DOI: | 10.1007/978-3-540-71923-6 |