Effective thermal conductivity behavior of filled vulcanized perfluoromethyl vinyl ether rubber
The effective thermal conductivity behavior of vulcanized perfluoromethyl vinyl ether (PMVE) rubber filled with various inorganic fillers was investigated and analyzed with thermal conductivity models. Experimental results showed that there was no significant improvement in the thermal conductivity...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2008-06, Vol.108 (5), p.2968-2974 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effective thermal conductivity behavior of vulcanized perfluoromethyl vinyl ether (PMVE) rubber filled with various inorganic fillers was investigated and analyzed with thermal conductivity models. Experimental results showed that there was no significant improvement in the thermal conductivity of PMVE rubber if the intrinsic thermal conductivity of the fillers was greater than 100 times that of the rubber matrix, and this agreed with the prediction of Maxwell's equation. The thermal conductivity of PMVE rubber filled with larger size silicon carbide (SiC) particles was greater than that of PMVE filled with smaller size SiC because of the lower interfacial thermal resistance, and there existed a transition filler loading at about 60 vol %. It was also found that flocculent graphite was the most effective thermally conductive filler among the fillers studied. A modified form of Agari's equation with a parameter independent on the units used was proposed. |
---|---|
ISSN: | 0021-8995 1097-4628 |
DOI: | 10.1002/app.27612 |