Closed hypersurfaces of with constant mean curvature and zero Gauss-Kronecker curvature

We consider a closed hypersurface with identically zero Gauss-Kronecker curvature. We prove that if M3 has constant mean curvature H, then M3 is minimal, i.e., H=0. This result extends Ramanathan's classification (Math. Z. 205 (1990) 645-658) result of closed minimal hypersurfaces of with vanis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comptes rendus. Mathématique 2005-03, Vol.340 (6), p.437-440
Hauptverfasser: Lusala, Tsasa, de Oliveira, Andre Gomes
Format: Artikel
Sprache:eng ; fre
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 440
container_issue 6
container_start_page 437
container_title Comptes rendus. Mathématique
container_volume 340
creator Lusala, Tsasa
de Oliveira, Andre Gomes
description We consider a closed hypersurface with identically zero Gauss-Kronecker curvature. We prove that if M3 has constant mean curvature H, then M3 is minimal, i.e., H=0. This result extends Ramanathan's classification (Math. Z. 205 (1990) 645-658) result of closed minimal hypersurfaces of with vanishing Gauss-Kronecker curvature. To cite this article: T. Lusala, A. Gomes de Oliveira, C. R. Acad. Sci. Paris, Ser. I 340 (2005). Resume Nous considerons une hypersurface fermee (compacte et sans bord) a courbure de Gauss-Kronecker identiquement nulle. Nous prouvons que si la courbure moyenne H de M3 est constante, alors l'hypersurface M3 est necessairement minimale, c.a.d, H=0. Ce resultat generalise celui obtenu dans l'article de Ramanathan (Math. Z. 205 (1990) 645-658) concernant les hypersurfaces fermees minimales a courbure de Gauss-Kronecker identiquement nulle dans. Pour citer cet article: T. Lusala, A. Gomes de Oliveira, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
doi_str_mv 10.1016/j.crma.2005.01.005
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_32285725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32285725</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_322857253</originalsourceid><addsrcrecordid>eNqNiz1PwzAQQK0KpJaPP9DpJrYYO1biZq74kFgrwVad3IvaktjtnQ2CX08GJFam94b3lFpao62x7f1RBx5R18Y02lg9YaYW1vtV5Zq2u5i8dbYy3r3N1ZXI0UxT57uFel0PSWgH-68TsRTuMZBA6uHzkPcQUpSMMcNIGCEU_sBcmADjDr6JEzxhEaleOEUK78R_yY267HEQuv3ltbp7fNisn6sTp3MhydvxIIGGASOlIltX16vG1437d_gDjjFNUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32285725</pqid></control><display><type>article</type><title>Closed hypersurfaces of with constant mean curvature and zero Gauss-Kronecker curvature</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lusala, Tsasa ; de Oliveira, Andre Gomes</creator><creatorcontrib>Lusala, Tsasa ; de Oliveira, Andre Gomes</creatorcontrib><description>We consider a closed hypersurface with identically zero Gauss-Kronecker curvature. We prove that if M3 has constant mean curvature H, then M3 is minimal, i.e., H=0. This result extends Ramanathan's classification (Math. Z. 205 (1990) 645-658) result of closed minimal hypersurfaces of with vanishing Gauss-Kronecker curvature. To cite this article: T. Lusala, A. Gomes de Oliveira, C. R. Acad. Sci. Paris, Ser. I 340 (2005). Resume Nous considerons une hypersurface fermee (compacte et sans bord) a courbure de Gauss-Kronecker identiquement nulle. Nous prouvons que si la courbure moyenne H de M3 est constante, alors l'hypersurface M3 est necessairement minimale, c.a.d, H=0. Ce resultat generalise celui obtenu dans l'article de Ramanathan (Math. Z. 205 (1990) 645-658) concernant les hypersurfaces fermees minimales a courbure de Gauss-Kronecker identiquement nulle dans. Pour citer cet article: T. Lusala, A. Gomes de Oliveira, C. R. Acad. Sci. Paris, Ser. I 340 (2005).</description><identifier>ISSN: 1631-073X</identifier><identifier>EISSN: 1778-3569</identifier><identifier>DOI: 10.1016/j.crma.2005.01.005</identifier><language>eng ; fre</language><ispartof>Comptes rendus. Mathématique, 2005-03, Vol.340 (6), p.437-440</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27904,27905</link.rule.ids></links><search><creatorcontrib>Lusala, Tsasa</creatorcontrib><creatorcontrib>de Oliveira, Andre Gomes</creatorcontrib><title>Closed hypersurfaces of with constant mean curvature and zero Gauss-Kronecker curvature</title><title>Comptes rendus. Mathématique</title><description>We consider a closed hypersurface with identically zero Gauss-Kronecker curvature. We prove that if M3 has constant mean curvature H, then M3 is minimal, i.e., H=0. This result extends Ramanathan's classification (Math. Z. 205 (1990) 645-658) result of closed minimal hypersurfaces of with vanishing Gauss-Kronecker curvature. To cite this article: T. Lusala, A. Gomes de Oliveira, C. R. Acad. Sci. Paris, Ser. I 340 (2005). Resume Nous considerons une hypersurface fermee (compacte et sans bord) a courbure de Gauss-Kronecker identiquement nulle. Nous prouvons que si la courbure moyenne H de M3 est constante, alors l'hypersurface M3 est necessairement minimale, c.a.d, H=0. Ce resultat generalise celui obtenu dans l'article de Ramanathan (Math. Z. 205 (1990) 645-658) concernant les hypersurfaces fermees minimales a courbure de Gauss-Kronecker identiquement nulle dans. Pour citer cet article: T. Lusala, A. Gomes de Oliveira, C. R. Acad. Sci. Paris, Ser. I 340 (2005).</description><issn>1631-073X</issn><issn>1778-3569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNiz1PwzAQQK0KpJaPP9DpJrYYO1biZq74kFgrwVad3IvaktjtnQ2CX08GJFam94b3lFpao62x7f1RBx5R18Y02lg9YaYW1vtV5Zq2u5i8dbYy3r3N1ZXI0UxT57uFel0PSWgH-68TsRTuMZBA6uHzkPcQUpSMMcNIGCEU_sBcmADjDr6JEzxhEaleOEUK78R_yY267HEQuv3ltbp7fNisn6sTp3MhydvxIIGGASOlIltX16vG1437d_gDjjFNUg</recordid><startdate>20050315</startdate><enddate>20050315</enddate><creator>Lusala, Tsasa</creator><creator>de Oliveira, Andre Gomes</creator><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050315</creationdate><title>Closed hypersurfaces of with constant mean curvature and zero Gauss-Kronecker curvature</title><author>Lusala, Tsasa ; de Oliveira, Andre Gomes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_322857253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; fre</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lusala, Tsasa</creatorcontrib><creatorcontrib>de Oliveira, Andre Gomes</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Comptes rendus. Mathématique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lusala, Tsasa</au><au>de Oliveira, Andre Gomes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Closed hypersurfaces of with constant mean curvature and zero Gauss-Kronecker curvature</atitle><jtitle>Comptes rendus. Mathématique</jtitle><date>2005-03-15</date><risdate>2005</risdate><volume>340</volume><issue>6</issue><spage>437</spage><epage>440</epage><pages>437-440</pages><issn>1631-073X</issn><eissn>1778-3569</eissn><abstract>We consider a closed hypersurface with identically zero Gauss-Kronecker curvature. We prove that if M3 has constant mean curvature H, then M3 is minimal, i.e., H=0. This result extends Ramanathan's classification (Math. Z. 205 (1990) 645-658) result of closed minimal hypersurfaces of with vanishing Gauss-Kronecker curvature. To cite this article: T. Lusala, A. Gomes de Oliveira, C. R. Acad. Sci. Paris, Ser. I 340 (2005). Resume Nous considerons une hypersurface fermee (compacte et sans bord) a courbure de Gauss-Kronecker identiquement nulle. Nous prouvons que si la courbure moyenne H de M3 est constante, alors l'hypersurface M3 est necessairement minimale, c.a.d, H=0. Ce resultat generalise celui obtenu dans l'article de Ramanathan (Math. Z. 205 (1990) 645-658) concernant les hypersurfaces fermees minimales a courbure de Gauss-Kronecker identiquement nulle dans. Pour citer cet article: T. Lusala, A. Gomes de Oliveira, C. R. Acad. Sci. Paris, Ser. I 340 (2005).</abstract><doi>10.1016/j.crma.2005.01.005</doi></addata></record>
fulltext fulltext
identifier ISSN: 1631-073X
ispartof Comptes rendus. Mathématique, 2005-03, Vol.340 (6), p.437-440
issn 1631-073X
1778-3569
language eng ; fre
recordid cdi_proquest_miscellaneous_32285725
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
title Closed hypersurfaces of with constant mean curvature and zero Gauss-Kronecker curvature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A03%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Closed%20hypersurfaces%20of%20with%20constant%20mean%20curvature%20and%20zero%20Gauss-Kronecker%20curvature&rft.jtitle=Comptes%20rendus.%20Math%C3%A9matique&rft.au=Lusala,%20Tsasa&rft.date=2005-03-15&rft.volume=340&rft.issue=6&rft.spage=437&rft.epage=440&rft.pages=437-440&rft.issn=1631-073X&rft.eissn=1778-3569&rft_id=info:doi/10.1016/j.crma.2005.01.005&rft_dat=%3Cproquest%3E32285725%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32285725&rft_id=info:pmid/&rfr_iscdi=true