Calculating scattering matrices by wave function matching

The conductance of nanoscale structures can be conveniently related to their scattering properties expressed in terms of transmission and reflection coefficients. Wave function matching (WFM) is a transparent technique for calculating transmission and reflection matrices for any Hamiltonian that can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica Status Solidi (b) 2008-04, Vol.245 (4), p.623-640
Hauptverfasser: Zwierzycki, M., Khomyakov, P. A., Starikov, A. A., Xia, K., Talanana, M., Xu, P. X., Karpan, V. M., Marushchenko, I., Turek, I., Bauer, G. E. W., Brocks, G., Kelly, P. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The conductance of nanoscale structures can be conveniently related to their scattering properties expressed in terms of transmission and reflection coefficients. Wave function matching (WFM) is a transparent technique for calculating transmission and reflection matrices for any Hamiltonian that can be represented in tight‐binding form. A first‐principles Kohn–Sham Hamiltonian represented on a localized orbital basis or on a real space grid has such a form. WFM is based upon direct matching of the scattering‐region wave function to the Bloch modes of ideal leads used to probe the scattering region. The purpose of this paper is to give a pedagogical introduction to WFM and present some illustrative examples of its use in practice. We briefly discuss WFM for calculating the conductance of atomic wires, using a real space grid implementation. A tight‐binding muffin‐tin orbital implementation very suitable for studying spin‐dependent transport in layered magnetic materials is illustrated by looking at spin‐dependent transmission through ideal and disordered interfaces. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
ISSN:0370-1972
1521-3951
DOI:10.1002/pssb.200743359