The role of bromide and iodide ions in the salinization mapping of the aquifer of Glafkos River basin (northwest Achaia, Greece)

Seawater intrusion causes many problems for groundwater quality, whereas natural remediation is time consuming. However, in cases where groundwater replenishment is feasible, groundwater quality remediation is possible and rapid. The alluvial aquifer in the lowland of the Glafkos River basin, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrological processes 2008-02, Vol.22 (5), p.611-622
Hauptverfasser: Mandilaras, D., Lambrakis, N., Stamatis, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Seawater intrusion causes many problems for groundwater quality, whereas natural remediation is time consuming. However, in cases where groundwater replenishment is feasible, groundwater quality remediation is possible and rapid. The alluvial aquifer in the lowland of the Glafkos River basin, which extends south of Patras city, was for over 30 years the major water source supplying the broader area. Groundwater quality has been degraded due to seawater intrusion, caused by overpumping and generally by inappropriate groundwater management. During the last decade, groundwater quality has been remedied due to diminished groundwater ions. The remediation rate was further higher because of rapid discharge of the brackish groundwater, through wells with freely flowing water in the coastal area, where, however, groundwater quality remains low. This paper deals with the hydrogeochemical processes that take place in the area. It is ascertained that ion exchange and mineral dilution processes are dominant. The ion relations between chloride, bromide and iodide, as well as the distribution maps of their concentrations, were used to determine the spatial distribution of the seawater intrusion front. In the lower part of the area in a distance from 1000 and 1500 m from the coast, the rBr−/rCl− ratio showed low values (
ISSN:0885-6087
1099-1085
DOI:10.1002/hyp.6627