A proof that a discrete delta function is second-order accurate
It is proved that a discrete delta function introduced by Smereka [P. Smereka, The numerical approximation of a delta function with application to level set methods, J. Comput. Phys. 211 (2006) 77–90] gives a second-order accurate quadrature rule for surface integrals using values on a regular backg...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2008-02, Vol.227 (4), p.2195-2197 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is proved that a discrete delta function introduced by Smereka [P. Smereka, The numerical approximation of a delta function with application to level set methods, J. Comput. Phys. 211 (2006) 77–90] gives a second-order accurate quadrature rule for surface integrals using values on a regular background grid. The delta function is found using a technique of Mayo [A. Mayo, The fast solution of Poisson’s and the biharmonic equations on irregular regions, SIAM J. Numer. Anal. 21 (1984) 285–299]. It can be expressed naturally using a level set function. |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2007.11.004 |