A new data extrapolation algorithm for high resolution ISAR imaging

A new data extrapolation algorithm for high resolution radar imaging is presented. The backscattered data are modeled as an autoregressive process where the prediction coefficients are computed using 1D least-square lattice filters. Unlike the well-known Burg or modified covariance methods, least sq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electronics and communications 2006-04, Vol.60 (4), p.316-319
1. Verfasser: Erer, Işin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new data extrapolation algorithm for high resolution radar imaging is presented. The backscattered data are modeled as an autoregressive process where the prediction coefficients are computed using 1D least-square lattice filters. Unlike the well-known Burg or modified covariance methods, least square lattice modeling yields different prediction coefficients for forward and backward directions. The proposed method does not need to satisfy Levinson recursion, i.e. does not suffer from the limitations of the Burg method such as spectral splitting or bias in the locations of the scattering centers. Moreover, due to its lattice structure it does not need any matrix inversion like the modified covariance method. Results obtained for an experimental target are included to confirm the proposed algorithm.
ISSN:1434-8411
1618-0399
DOI:10.1016/j.aeue.2005.05.010