Numerical Simulation of Equal and Opposing Subcritical Flow Junctions

This study presents measured and computational results of a flow pattern at a junction with equal and opposing flows in the upstream channel that collide and turn 90° into the branch channel. The computational results are obtained using a two-dimensional, depth-averaged model with the k-ε turbulent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydraulic engineering (New York, N.Y.) N.Y.), 2008-02, Vol.134 (2), p.267-273
Hauptverfasser: Frizzell, C. S, Khan, A. A, Werth, D. E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study presents measured and computational results of a flow pattern at a junction with equal and opposing flows in the upstream channel that collide and turn 90° into the branch channel. The computational results are obtained using a two-dimensional, depth-averaged model with the k-ε turbulent closure scheme. The aim is to predict the recirculation zones that form as the flow turns into the branch channel. The simulated depth and velocity profiles in the upstream main and the downstream branch channels are found to compare well with the measurements made in the physical model for various inlet Froude numbers and width ratios of the main channel to the branch channel. The absolute relative error between the measured and computed contraction coefficient, a measure of the recirculation zone size, is less than 4.7%. The computational model is then used to develop curves for the contraction coefficient for various inlet Froude numbers and ratios of main channel width to the branch channel width for design purposes.
ISSN:0733-9429
1943-7900
DOI:10.1061/(ASCE)0733-9429(2008)134:2(267)