NASA Radioisotope Power Systems Program Update

The use of Radioisotope Power Systems (RPS) represents a critical capability for exploration of the Solar System. RPS have been used for decades to power deep space missions and sometimes for the operation of landers or rovers on Mars. Modest power needs ( < ~1 KWe) for regions relatively far fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Harmon, B Alan, Lavery, David B
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of Radioisotope Power Systems (RPS) represents a critical capability for exploration of the Solar System. RPS have been used for decades to power deep space missions and sometimes for the operation of landers or rovers on Mars. Modest power needs ( < ~1 KWe) for regions relatively far from the Sun (~ > 5 AU) make them attractive, and, in most cases, essential for a variety of missions. Even close by, such as on the surface of the Moon or Mars, RPS enhances operational capability. NASA's strategic planning now contemplates more ambitious missions than those of the past, with the likelihood of increasingly severe or more diverse environments in which to contend. We are at a crossroads in the application of radioisotope power, thanks partially to progress made, but also due to the realities of budget constraints and the availability of plutonium-238 fuel. Within a few years, investments in power conversion technologies could yield next generation flight systems with capability for multiple environments, and improved efficiency and specific power. However, for RPS, given the demands on reliability and system longevity (15+years), infusion of any new RPS technology is the challenge. We review progress made during the past year in development of RPS and note applications in NASA's Science Plan (2007).
ISSN:0094-243X
DOI:10.1063/1.2844993