Design of a Steerable Two-beam System for Simultaneous On- and Off-axis Imaging with GUFI
The GUFI (Galway Ultra Fast Imager) has been primarily developed for high throughput differential photometry, in order to study variability in challenging circumstances, such as near bright sources or within crowded fields. The instrument features a low light level charged coupled device (L3-CCD) th...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The GUFI (Galway Ultra Fast Imager) has been primarily developed for high throughput differential photometry, in order to study variability in challenging circumstances, such as near bright sources or within crowded fields. The instrument features a low light level charged coupled device (L3-CCD) that enhances detector speed and sensitivity but only covers small fields of view. This presents limitations on possible science targets when suitable differential photometry comparison stars are not in the immediate vicinity of the target. Conventional solutions for imaging larger portions of sky without sacrificing SNR include telescope focal reduction methods and large arrays of CCDs. Our alternative solution entails a two-path, `outrigger' optical design to image target and comparison stars separately. This new approach allows detection of variable targets that formerly were not reachable with smaller-field detectors. The mechanical design was originally generated with AutoCAD(R) drafting software before being compiled in, and vetted with an OSLO(R) optical design package. Through filters B, V and I, the limiting design aberration was chromatic focal shift that appeared most severe in the B-filter's bandpass range. However, the degree of image blurring caused by this aberration and others did not exceed the scale of that already produced by atmospheric turbulence. For each bandpass, the model's imaging performance met and exceeded expectations set by all design constraints. |
---|---|
ISSN: | 0094-243X |
DOI: | 10.1063/1.2896937 |