Coiled flow inverter as an inline mixer
Helical coils are widely used in the process industries to improve the mixing efficiency under laminar flow conditions. It was further observed that in the regular helical coils, there exists a confined region in the tube cross-section where fluids are entrapped and can escape only by diffusion. In...
Gespeichert in:
Veröffentlicht in: | Chemical engineering science 2008-03, Vol.63 (6), p.1724-1732 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Helical coils are widely used in the process industries to improve the mixing efficiency under laminar flow conditions. It was further observed that in the regular helical coils, there exists a confined region in the tube cross-section where fluids are entrapped and can escape only by diffusion. In the present work, an attempt has been made to further enhance the mixing in the coiled tube at low Dean number using the phenomenon of flow inversion. The study is performed in coiled flow inverter (CFI) [Saxena, A.K., Nigam, K.D.P., 1984. Coiled configuration for flow inversion and its effect on residence time distribution. A.I.Ch.E. Journal 30, 363–368] which was developed using the concept of inverting the direction of fluid by
90
∘
. It comprises coils with equidistant
90
∘
bends. The scalar mixing of two miscible fluids has been quantified for different process conditions (Dean number, Schmidt number and number of bends) by using scalar transport technique. There was a significant increase in mixing performance of CFI as compared to regular helical coils at low Dean number. The mixing efficiency increased with the increase in Dean number and number of bends. It was also observed that the mixing performance was enhanced with increase in Schmidt number. A new correlation has been proposed for unmixedness coefficient of CFI as a function of Dean number, Schmidt number and number of bends. The proposed correlation has maximum error of
±
20
%
with the numerical predictions. |
---|---|
ISSN: | 0009-2509 1873-4405 |
DOI: | 10.1016/j.ces.2007.10.028 |