Coupling exothermic and endothermic reactions in adiabatic reactors

The steady state and the dynamic behavior of coupling exothermic and endothermic reactions in directly coupled adiabatic packed bed reactors (DCAR) are analyzed using one-dimensional pseudo-homogeneous plug flow model. Two different configurations of DCAR (simultaneous DCAR—SIMDCAR and sequential DC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science 2008-03, Vol.63 (6), p.1654-1667
Hauptverfasser: Ramaswamy, R.C., Ramachandran, P.A., Duduković, M.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The steady state and the dynamic behavior of coupling exothermic and endothermic reactions in directly coupled adiabatic packed bed reactors (DCAR) are analyzed using one-dimensional pseudo-homogeneous plug flow model. Two different configurations of DCAR (simultaneous DCAR—SIMDCAR and sequential DCAR—SEQDCAR) are investigated. In SIMDCAR, the catalyst bed favors both exothermic and endothermic reactions and both reactions occur simultaneously. SEQDCAR has alternating layers of catalyst beds for exothermic and endothermic reactions and hence the exothermic and endothermic reactions occur in a sequential fashion. The performance of both reactors, in terms of conversion achieved and manifested hot spot behavior, is compared with that of the co-current heat exchanger type reactor. Various possible operational regimes in SIMDCAR have been classified and the conditions for the existence of hot spots or cold spots in SIMDCAR are obtained analytically for the first order reactions with equal activation energies. The reactor behavior for the reactions with non-equal activation energies is also presented. The preliminary criteria for the selection of suitable reactor type and the general bounds on the reaction parameters to obtain the desired conversion for endothermic reaction with minimal temperature rise are proposed. The dynamic behavior of these reactors is important for control applications and we have reported some of the transient behavior.
ISSN:0009-2509
1873-4405
DOI:10.1016/j.ces.2007.11.010