“Bubble-Tower” phenomena in a semilinear elliptic equation with mixed Sobolev growth
In this work we consider the following problem { Δ u + u p + u q = 0 in R N u > 0 in R N lim | x | → ∞ u ( x ) → 0 with N / ( N − 2 ) < p < p ∗ = ( N + 2 ) / ( N − 2 ) < q , N ≥ 3 . We prove that if p is fixed, and q is close enough to the critical exponent p ∗ , then there exists a radi...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2008-03, Vol.68 (5), p.1382-1397 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work we consider the following problem
{
Δ
u
+
u
p
+
u
q
=
0
in
R
N
u
>
0
in
R
N
lim
|
x
|
→
∞
u
(
x
)
→
0
with
N
/
(
N
−
2
)
<
p
<
p
∗
=
(
N
+
2
)
/
(
N
−
2
)
<
q
,
N
≥
3
.
We prove that if
p
is fixed, and
q
is close enough to the critical exponent
p
∗
, then there exists a radial solution which behaves like a superposition of
bubbles of different blow-up orders centered at the origin. Similarly when
q
is fixed and
p
is sufficiently close to the critical, we prove the existence of a radial solution which resembles a superposition of
flat bubbles centered at the origin. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2006.12.032 |