Synchronization dynamics in a ring of four mutually coupled biological systems
This paper considers the synchronization dynamics in a ring of four mutually coupled biological systems described by coupled Van der Pol oscillators. The coupling parameter are non-identical between oscillators. The stability boundaries of the process are first evaluated without the influence of the...
Gespeichert in:
Veröffentlicht in: | Communications in nonlinear science & numerical simulation 2008-09, Vol.13 (7), p.1361-1372 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper considers the synchronization dynamics in a ring of four mutually coupled biological systems described by coupled Van der Pol oscillators. The coupling parameter are non-identical between oscillators. The stability boundaries of the process are first evaluated without the influence of the local injection using the eigenvalues properties and the fourth-order Runge–Kutta algorithm. The effects of a locally injected trajectory on the stability boundaries of the synchronized states are performed using numerical simulations. In both cases, the stability boundaries and the main dynamical states are reported on the stability maps in the (K1,K2) plane. |
---|---|
ISSN: | 1007-5704 1878-7274 |
DOI: | 10.1016/j.cnsns.2006.11.004 |