Two-Sample Tests of Area-Under-the-Curve in the Presence of Missing Data

The commonly used two-sample tests of equal area-under-the-curve (AUC), where AUC is based on the linear trapezoidal rule, may have poor properties when observations are missing, even if they are missing completely at random (MCAR). We propose two tests: one that has good properties when data are MC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The international journal of biostatistics 2008-01, Vol.4 (1), p.1068-1068
Hauptverfasser: Spritzler, John, DeGruttola, Victor G, Pei, Lixia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The commonly used two-sample tests of equal area-under-the-curve (AUC), where AUC is based on the linear trapezoidal rule, may have poor properties when observations are missing, even if they are missing completely at random (MCAR). We propose two tests: one that has good properties when data are MCAR and another that has good properties when the data are missing at random (MAR), provided that the pattern of missingness is monotonic. In addition, we discuss other non-parametric tests of hypotheses that are similar, but not identical, to the hypothesis of equal AUCs, but that often have better statistical properties than do AUC tests and may be more scientifically appropriate for many settings.
ISSN:1557-4679