A Study on Tool Deflection Trend using Real Captured Images In Micro Endmilling Process

Recently, ultra-precision micro patterns and shapes have been widely used in optical field. Various methods which are based on semi-conductor fabrication methods are nowadays used in fabrication of micro shapes and patterns, but micro endmilling technology has lately attracted considerable attention...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key engineering materials 2008-01, Vol.364-366, p.662-667
Hauptverfasser: Kim, Gun-Hee, Yoon, Gil-Sang, Heo, Young-Moo, Chang, Sung-Ho, Seo, Tae Il, Cho, Myeong-Woo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, ultra-precision micro patterns and shapes have been widely used in optical field. Various methods which are based on semi-conductor fabrication methods are nowadays used in fabrication of micro shapes and patterns, but micro endmilling technology has lately attracted considerable attention because of various available materials, flexibility of process and high-productivity. For the precision micro endmilling process, analysis of micro cutting error is mandatory. In general, tool deflection is a major factor which causes cutting error and limits realization of the high-precision cutting process. Specially, in micro endmilling process, micro tool deflection generates very serious problems compared to macro tool deflection. In this paper, it is performed to observe the real tool deflection shapes in micro endmilling process, so the trend of micro tool deflection was analyzed using real captured images in this study. To get the real images of micro tool deflection, micro slot cutting processes were executed under various cutting conditions using micro endmill and the real images of tool deflection were obtained during cutting process by high-speed camera. Finally, the extent of tool deflection was calculated by the deflection angle according to cutting conditions and two trends (the point of first tool contact and the cutting stage) of micro tool deflection were analyzed.
ISSN:1013-9826