Removal of As(III) in a column reactor packed with iron-coated sand and manganese-coated sand

The applicability of manganese-coated sand (MCS) and iron-coated sand (ICS) for the treatment of As(III) via oxidation and adsorption processes was investigated. Scanning electron microscopy (SEM) and X-ray diffraction spectroscopy (XRD) were used to observe the surface properties of the coated laye...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2008-02, Vol.150 (3), p.565-572
Hauptverfasser: Chang, Yoon-Young, Song, Ki-Hoon, Yang, Jae-Kyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The applicability of manganese-coated sand (MCS) and iron-coated sand (ICS) for the treatment of As(III) via oxidation and adsorption processes was investigated. Scanning electron microscopy (SEM) and X-ray diffraction spectroscopy (XRD) were used to observe the surface properties of the coated layer. In the batch adsorption, the adsorption rate of As(V) onto ICS was greater than that of As(III), and ICS showed a greater adsorption capacity for the removal of As(V) than As(III). From a bench-scale column test, a column reactor packed with both MCS and ICS was found to be the best system for the treatment of As(III) due to the promising oxidation efficiency of As(III) to As(V) by MCS and adsorption of As(V) by both MCS and ICS. From these bench-scale results, the treatment of synthetic wastewater contaminated with As(III) was investigated using a pilot-scale filtration system packed with equal amounts (each 21.5 kg) of MCS at the bottom and ICS on the top. The height and diameter of the column were 200 and 15 cm, respectively. As(III) solution was introduced into the bottom of the filtration system, at a speed of 5 × 10 −3 cm s −1, over 148 days. The breakthrough of total arsenic in the mid-sampling (end of the MCS bed) and final-sampling (end of the ICS bed) positions began after 18 and 44 days, respectively, and showed complete breakthrough after 148 days. Although the breakthrough of total arsenic in the mid-sampling position began after 18 days, the concentration of As(III) in the effluent was below 50 μg L −1 for up to 61 days. This result indicates that MCS has sufficient oxidizing capacity for As(III), and 1 kg of MCS can oxidize 93 mg of As(III) for up to 61 days. When the complete breakthrough of total arsenic occurred, the total arsenic removed by 1 kg of MCS was 79.0 mg, suggesting MCS acts as an adsorbent for As(V), as well as an oxidant for As(III). From this work, a filtration system consisting of both MCS and ICS can potentially be used a new treatment system to simultaneously treat As(III) and As(V).
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2007.05.005