A new criterion of period-doubling bifurcation in maps and its application to an inertial impact shaker

A new critical criterion of period-doubling bifurcations is proposed for high dimensional maps. Without the dependence on eigenvalues as in the classical bifurcation criterion, this criterion is composed of a series of algebraic conditions under which period-doubling bifurcation occurs. The proposed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2008-03, Vol.311 (1), p.212-223
Hauptverfasser: Wen, Guilin, Chen, Shijian, Jin, Qiutan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new critical criterion of period-doubling bifurcations is proposed for high dimensional maps. Without the dependence on eigenvalues as in the classical bifurcation criterion, this criterion is composed of a series of algebraic conditions under which period-doubling bifurcation occurs. The proposed criterion is applied to the analysis of period-doubling bifurcation in a two-degree-of-freedom inertial shaker model. It can be seen in this example that the proposed criterion is preferable to the classical bifurcation criterion in high dimensional maps.
ISSN:0022-460X
1095-8568
DOI:10.1016/j.jsv.2007.09.003