Effects of synthesis temperature on the microstructures and basic dyes adsorption of titanate nanotubes

The adsorption of two basic dyes (Basic Green 5 (BG5) and Basic Violet 10 (BV10)) onto titanate nanotubes (TNT) that were prepared via a hydrothermal method with different synthesis temperatures was studied to examine the potential of TNT for the removal of basic dyes from aqueous solution. Effects...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2008-02, Vol.150 (3), p.494-503
Hauptverfasser: Lee, Chung-Kung, Lin, Kuen-Song, Wu, Chian-Fu, Lyu, Meng-Du, Lo, Chao-Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The adsorption of two basic dyes (Basic Green 5 (BG5) and Basic Violet 10 (BV10)) onto titanate nanotubes (TNT) that were prepared via a hydrothermal method with different synthesis temperatures was studied to examine the potential of TNT for the removal of basic dyes from aqueous solution. Effects of synthesis temperature on the microstructures of TNT were characterized with transmission electron microscopy (TEM), X-ray diffraction (XRD), and nitrogen adsorption–desorption isotherms. For synthesis temperature greater than 160 °C, the microstructure of titanate might transform from nanotube into nanorod accompanying with the sharp decrease in the titanate interlayer spacing, BET surface area, and pore volume. Effects of the pore structure variation on the basic dyes adsorption of TNT were discussed. Moreover, the adsorption mechanisms of basic dyes from aqueous solution onto TNT were examined with the aid of model analyses of the adsorption equilibrium and kinetic data of BG5 and BV10. The regeneration of TNT was also briefly discussed.
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2007.04.129