Genetic algorithm based inversion of neural networks applied to optimised design of UWB planar antennas

An inversion of artificial neural networks using a genetic algorithm is presented for a novel concept of optimisation applied to UWB planar antennas of bow-tie type with respect to specified values of antenna performance in the frequency range 3.1-10.6GHz. This efficient concept is shown to achieve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics letters 2008-01, Vol.44 (3), p.177-179
Hauptverfasser: VASYLENKO, D. O, EDENHOFER, P, DUBROVKA, F. F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An inversion of artificial neural networks using a genetic algorithm is presented for a novel concept of optimisation applied to UWB planar antennas of bow-tie type with respect to specified values of antenna performance in the frequency range 3.1-10.6GHz. This efficient concept is shown to achieve significant reduction in computing time for optimisation. The multidimensional inversion is characterised by a simple composite fitness or target function that includes antenna parameters as a function of signal frequency or/and angle dependence. Good impedance matching and gain performance is achieved over the whole frequency range by adequately modifying the radiating contour profile of the conventional triangular bow-tie antenna.
ISSN:0013-5194
1350-911X
DOI:10.1049/el:20083395