Three-dimensional roughness effect on microchannel heat transfer and pressure drop

Surface roughness may have a significant impact on microchannel performances, since at such a small scale it is nearly impossible to obtain an actual smooth surface. The numerical approach allows a detailed description of the surface imperfections; thus, we can easily separate roughness from other m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2007-12, Vol.50 (25), p.5249-5259
Hauptverfasser: Croce, Giulio, D’agaro, Paola, Nonino, Carlo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surface roughness may have a significant impact on microchannel performances, since at such a small scale it is nearly impossible to obtain an actual smooth surface. The numerical approach allows a detailed description of the surface imperfections; thus, we can easily separate roughness from other microscale effects. In this paper, roughness is modelled as a set of three-dimensional conical peaks distributed on the ideal smooth surfaces of a plane microchannel. Different peak heights and different peak arrangements are considered at various Reynolds numbers. Periodicity conditions in both transverse and streamwise directions allow the reduction of the domain to a small volume containing one or two peaks. The performances of parallel plate rough channels are compared with standard correlation. Results show a remarkable effect of roughness on pressure drop, and a weaker one on the Nusselt number. The performances are dependent on the geometrical details of the roughness elements. The impact of the uncertainty in the definition and measurement of the hydraulic diameter is also discussed.
ISSN:0017-9310
1879-2189
DOI:10.1016/j.ijheatmasstransfer.2007.06.021