Unlocking Disease-Modifying Treatments for TDP-43-Mediated Neurodegeneration
Neurons degenerate in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), causing progressive and inevitably fatal neurological decline. The best therapeutic strategies target underlying disease mediators, but after decades of intensive research, the causes of these neurodegenerat...
Gespeichert in:
Veröffentlicht in: | BioEssays 2025-02, p.e202400257 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neurons degenerate in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), causing progressive and inevitably fatal neurological decline. The best therapeutic strategies target underlying disease mediators, but after decades of intensive research, the causes of these neurodegenerative diseases remain elusive. Recently, coordinated activities of large consortia, increasing open access to large datasets, new methods such as cryo-transmission electron microscopy, and advancements in high-resolution omics technologies have offered new insights into the biology of disease that bring us closer to understanding mechanisms of neurodegeneration. In particular, improved understanding of the roles of the key pathological protein TAR DNA binding protein 43 (TDP-43) in disease has revealed intriguing new opportunities that provide hope for better diagnostic tools and effective treatments for ALS and FTD. |
---|---|
ISSN: | 0265-9247 1521-1878 1521-1878 |
DOI: | 10.1002/bies.202400257 |