Deep Learning Predicts Non-Normal Transmission Distributions in High-Field Asymmetric Waveform Ion Mobility (FAIMS) Directly from Peptide Sequence

Peptide ion mobility adds an extra dimension of separation to mass spectrometry-based proteomics. The ability to accurately predict peptide ion mobility would be useful to expedite assay development and to discriminate true answers in a database search. There are methods to accurately predict peptid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2025-02, Vol.97 (4), p.2254-2263
Hauptverfasser: McKetney, Justin, Miller, Ian J., Hutton, Alexandre, Sinitcyn, Pavel, Serrano, Lia R, Coon, Joshua J., Meyer, Jesse G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Peptide ion mobility adds an extra dimension of separation to mass spectrometry-based proteomics. The ability to accurately predict peptide ion mobility would be useful to expedite assay development and to discriminate true answers in a database search. There are methods to accurately predict peptide ion mobility through drift tube devices, but methods to predict mobility through high-field asymmetric waveform ion mobility (FAIMS) are underexplored. Here, we successfully model peptide ions’ FAIMS mobility using a multi-label classification scheme to account for non-normal transmission distributions. We trained two models from over 100,000 human peptide precursors: a random forest and a long-term short-term memory (LSTM) neural network. Both models had different strengths, and the ensemble average of model predictions produced a higher F2 score than either model alone. Finally, we explored cases where the models make mistakes and demonstrate the predictive performance of F2 = 0.66 (AUROC = 0.928) on a new test data set of nearly 40,000 E. coli peptide ions. The deep learning model is easily accessible via https://faims.xods.org.
ISSN:0003-2700
1520-6882
1520-6882
DOI:10.1021/acs.analchem.4c05359