Deep Learning Predicts Non-Normal Transmission Distributions in High-Field Asymmetric Waveform Ion Mobility (FAIMS) Directly from Peptide Sequence
Peptide ion mobility adds an extra dimension of separation to mass spectrometry-based proteomics. The ability to accurately predict peptide ion mobility would be useful to expedite assay development and to discriminate true answers in a database search. There are methods to accurately predict peptid...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2025-02, Vol.97 (4), p.2254-2263 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Peptide ion mobility adds an extra dimension of separation to mass spectrometry-based proteomics. The ability to accurately predict peptide ion mobility would be useful to expedite assay development and to discriminate true answers in a database search. There are methods to accurately predict peptide ion mobility through drift tube devices, but methods to predict mobility through high-field asymmetric waveform ion mobility (FAIMS) are underexplored. Here, we successfully model peptide ions’ FAIMS mobility using a multi-label classification scheme to account for non-normal transmission distributions. We trained two models from over 100,000 human peptide precursors: a random forest and a long-term short-term memory (LSTM) neural network. Both models had different strengths, and the ensemble average of model predictions produced a higher F2 score than either model alone. Finally, we explored cases where the models make mistakes and demonstrate the predictive performance of F2 = 0.66 (AUROC = 0.928) on a new test data set of nearly 40,000 E. coli peptide ions. The deep learning model is easily accessible via https://faims.xods.org. |
---|---|
ISSN: | 0003-2700 1520-6882 1520-6882 |
DOI: | 10.1021/acs.analchem.4c05359 |