STM-SQUID probe microscope

We have developed a STM-SQUID probe microscope. A high TC SQUID probe microscope was combined with a scanning tunneling microscope for investigation of samples at room temperature in air. A high permeability probe needle was used as a magnetic flux guide to improve the spatial resolution. The probe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Superconductor science & technology 2007-11, Vol.20 (11), p.S374-S379
Hauptverfasser: Hayashi, Tadayuki, Tachiki, Minoru, Itozaki, Hideo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have developed a STM-SQUID probe microscope. A high TC SQUID probe microscope was combined with a scanning tunneling microscope for investigation of samples at room temperature in air. A high permeability probe needle was used as a magnetic flux guide to improve the spatial resolution. The probe with tip radius of less than 100 nm was prepared by microelectropolishing. The probe was also used as a scanning tunneling microscope tip. Topography of the sample surface could be measured by the scanning tunneling microscope with high spatial resolution prior to observation by SQUID microscopy. The SQUID probe microscope image could be observed while keeping the distance from the sample surface to the probe tip constant. We observed a topographic image and a magnetic image of Ni fine pattern and also a magnetically recorded hard disk. Furthermore we have investigated a sample vibration method of the static magnetic field emanating from a sample with the aim of achieving a higher signal-to-noise (S/N) ratio.
ISSN:0953-2048
1361-6668
DOI:10.1088/0953-2048/20/11/S14