Low oxygen but dynamic marine redox conditions permitted the Cambrian Radiation
Whether metazoan diversification during the Cambrian Radiation was driven by increased marine oxygenation remains highly debated. Repeated global oceanic oxygenation events have been inferred during this interval, but the degree of shallow marine oxygenation and its relationship to biodiversificatio...
Gespeichert in:
Veröffentlicht in: | Science advances 2025-01, Vol.11 (4), p.eads2846 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Whether metazoan diversification during the Cambrian Radiation was driven by increased marine oxygenation remains highly debated. Repeated global oceanic oxygenation events have been inferred during this interval, but the degree of shallow marine oxygenation and its relationship to biodiversification and clade appearance remain uncertain. To resolve this, we interrogate an interval from ~527 to 519 Ma, encompassing multiple proposed global oceanic oxygenation events. We integrate the spatial and temporal distribution of shallow water, in situ reef metazoans, and trilobites, with high-resolution multi-proxy redox data through the highly biodiverse Siberian Platform. We document primarily dysoxic water column conditions, suggesting that early Cambrian metazoans, including motile skeletal benthos, had low oxygen demands. We further document oxygenation events coincident with positive carbon isotope excursions that led to modestly elevated oxygen levels. These events correspond to regional increases in species richness and habitat expansion of mainly endemic species, offering a potentially globally applicable model for biodiversification during the Cambrian Radiation. |
---|---|
ISSN: | 2375-2548 2375-2548 |
DOI: | 10.1126/sciadv.ads2846 |