Evaluating Large Language Models for Automated CPT Code Prediction in Endovascular Neurosurgery

Large language models (LLMs) have been utilized to automate tasks like writing discharge summaries and operative reports in neurosurgery. The present study evaluates their ability to identify current procedural terminology (CPT) codes from operative reports. Three LLMs (ChatGPT 4.0, AtlasGPT and Gem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical systems 2025-01, Vol.49 (1), p.15, Article 15
Hauptverfasser: Roy, Joanna M., Self, D. Mitchell, Isch, Emily, Musmar, Basel, Lan, Matthews, Keppetipola, Kavantissa, Koduri, Sravanthi, Pontarelli, Mary-Katharine, Tjoumakaris, Stavropoula I., Gooch, M. Reid, Rosenwasser, Robert H., Jabbour, Pascal M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 15
container_title Journal of medical systems
container_volume 49
creator Roy, Joanna M.
Self, D. Mitchell
Isch, Emily
Musmar, Basel
Lan, Matthews
Keppetipola, Kavantissa
Koduri, Sravanthi
Pontarelli, Mary-Katharine
Tjoumakaris, Stavropoula I.
Gooch, M. Reid
Rosenwasser, Robert H.
Jabbour, Pascal M.
description Large language models (LLMs) have been utilized to automate tasks like writing discharge summaries and operative reports in neurosurgery. The present study evaluates their ability to identify current procedural terminology (CPT) codes from operative reports. Three LLMs (ChatGPT 4.0, AtlasGPT and Gemini) were evaluated in their ability to provide CPT codes for diagnostic or interventional procedures in endovascular neurosurgery at a single institution. Responses were classified as correct, partially correct or incorrect, and the percentage of correctly identified CPT codes were calculated. The Chi-Square test and Kruskal Wallis test were used to compare responses across LLMs. A total of 30 operative notes were used in the present study. AtlasGPT identified CPT codes for 98.3% procedures with partially correct responses, while ChatGPT and Gemini provided partially correct responses for 86.7% and 30% procedures, respectively ( P  
doi_str_mv 10.1007/s10916-025-02149-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3159688992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3159688992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-69cf482f9ff51de66e88caabd25194550df5c307004f66e645a54b3edf59ad263</originalsourceid><addsrcrecordid>eNp9kM1PwyAYxonRuDn9BzwYEi9eqtAWWo5LMz-SqTvMxBthBZYubZlQluy_l63zIx48AG94fu_zwgPAJUa3GKHszmHEMI1QTMLCKYvSIzDEJEsimrP341_1AJw5t0IIMUqzUzBIWE4SisgQ8MlG1F50VbuEU2GXKuzt0otQPBupage1sXDsO9OITklYzOawCAKcWSWrsqtMC6sWTlppNsKVvhYWvihvjfPBzG7PwYkWtVMXh3ME3u4n8-Ixmr4-PBXjaVTGhHYRZaVO81gzrQmWilKV56UQCxkTzFJCkNSkTFCGUKqDSFMiSLpIVLhmQsY0GYGb3ndtzYdXruNN5UpV16JVxjueYMJonjMWB_T6D7oy3rbhdXuK5DGiOyruqTL8xVml-dpWjbBbjhHfxc_7-HmIn-_j52loujpY-0Wj5HfLV94BSHrABakNAf3M_sf2EztvkB0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3159582062</pqid></control><display><type>article</type><title>Evaluating Large Language Models for Automated CPT Code Prediction in Endovascular Neurosurgery</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Roy, Joanna M. ; Self, D. Mitchell ; Isch, Emily ; Musmar, Basel ; Lan, Matthews ; Keppetipola, Kavantissa ; Koduri, Sravanthi ; Pontarelli, Mary-Katharine ; Tjoumakaris, Stavropoula I. ; Gooch, M. Reid ; Rosenwasser, Robert H. ; Jabbour, Pascal M.</creator><creatorcontrib>Roy, Joanna M. ; Self, D. Mitchell ; Isch, Emily ; Musmar, Basel ; Lan, Matthews ; Keppetipola, Kavantissa ; Koduri, Sravanthi ; Pontarelli, Mary-Katharine ; Tjoumakaris, Stavropoula I. ; Gooch, M. Reid ; Rosenwasser, Robert H. ; Jabbour, Pascal M.</creatorcontrib><description>Large language models (LLMs) have been utilized to automate tasks like writing discharge summaries and operative reports in neurosurgery. The present study evaluates their ability to identify current procedural terminology (CPT) codes from operative reports. Three LLMs (ChatGPT 4.0, AtlasGPT and Gemini) were evaluated in their ability to provide CPT codes for diagnostic or interventional procedures in endovascular neurosurgery at a single institution. Responses were classified as correct, partially correct or incorrect, and the percentage of correctly identified CPT codes were calculated. The Chi-Square test and Kruskal Wallis test were used to compare responses across LLMs. A total of 30 operative notes were used in the present study. AtlasGPT identified CPT codes for 98.3% procedures with partially correct responses, while ChatGPT and Gemini provided partially correct responses for 86.7% and 30% procedures, respectively ( P  &lt; 0.001). AtlasGPT identified CPT codes correctly in an average of 35.3% of procedures, followed by ChatGPT (35.1%) and Gemini (8.9%) ( P  &lt; 0.001). A pairwise comparison among three LLMs revealed that AtlasGPT and ChatGPT outperformed Gemini. Untrained LLMs have the ability to identify partially correct CPT codes in endovascular neurosurgery. Training these models could further enhance their ability to identify CPT codes and minimize healthcare expenditure.</description><identifier>ISSN: 1573-689X</identifier><identifier>ISSN: 0148-5598</identifier><identifier>EISSN: 1573-689X</identifier><identifier>DOI: 10.1007/s10916-025-02149-4</identifier><identifier>PMID: 39853605</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial intelligence ; Automation ; Cardiovascular system ; Chatbots ; Chi-square test ; Codes ; Current Procedural Terminology ; Endovascular Procedures - methods ; Health care expenditures ; Health Informatics ; Health Sciences ; Humans ; Intervention ; Large language models ; Machine learning ; Medical coding ; Medical diagnosis ; Medicine ; Medicine &amp; Public Health ; Neurosurgery ; Neurosurgical Procedures - methods ; Statistics for Life Sciences</subject><ispartof>Journal of medical systems, 2025-01, Vol.49 (1), p.15, Article 15</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2025. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><rights>Copyright Springer Nature B.V. Dec 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-69cf482f9ff51de66e88caabd25194550df5c307004f66e645a54b3edf59ad263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10916-025-02149-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10916-025-02149-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39853605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roy, Joanna M.</creatorcontrib><creatorcontrib>Self, D. Mitchell</creatorcontrib><creatorcontrib>Isch, Emily</creatorcontrib><creatorcontrib>Musmar, Basel</creatorcontrib><creatorcontrib>Lan, Matthews</creatorcontrib><creatorcontrib>Keppetipola, Kavantissa</creatorcontrib><creatorcontrib>Koduri, Sravanthi</creatorcontrib><creatorcontrib>Pontarelli, Mary-Katharine</creatorcontrib><creatorcontrib>Tjoumakaris, Stavropoula I.</creatorcontrib><creatorcontrib>Gooch, M. Reid</creatorcontrib><creatorcontrib>Rosenwasser, Robert H.</creatorcontrib><creatorcontrib>Jabbour, Pascal M.</creatorcontrib><title>Evaluating Large Language Models for Automated CPT Code Prediction in Endovascular Neurosurgery</title><title>Journal of medical systems</title><addtitle>J Med Syst</addtitle><addtitle>J Med Syst</addtitle><description>Large language models (LLMs) have been utilized to automate tasks like writing discharge summaries and operative reports in neurosurgery. The present study evaluates their ability to identify current procedural terminology (CPT) codes from operative reports. Three LLMs (ChatGPT 4.0, AtlasGPT and Gemini) were evaluated in their ability to provide CPT codes for diagnostic or interventional procedures in endovascular neurosurgery at a single institution. Responses were classified as correct, partially correct or incorrect, and the percentage of correctly identified CPT codes were calculated. The Chi-Square test and Kruskal Wallis test were used to compare responses across LLMs. A total of 30 operative notes were used in the present study. AtlasGPT identified CPT codes for 98.3% procedures with partially correct responses, while ChatGPT and Gemini provided partially correct responses for 86.7% and 30% procedures, respectively ( P  &lt; 0.001). AtlasGPT identified CPT codes correctly in an average of 35.3% of procedures, followed by ChatGPT (35.1%) and Gemini (8.9%) ( P  &lt; 0.001). A pairwise comparison among three LLMs revealed that AtlasGPT and ChatGPT outperformed Gemini. Untrained LLMs have the ability to identify partially correct CPT codes in endovascular neurosurgery. Training these models could further enhance their ability to identify CPT codes and minimize healthcare expenditure.</description><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Cardiovascular system</subject><subject>Chatbots</subject><subject>Chi-square test</subject><subject>Codes</subject><subject>Current Procedural Terminology</subject><subject>Endovascular Procedures - methods</subject><subject>Health care expenditures</subject><subject>Health Informatics</subject><subject>Health Sciences</subject><subject>Humans</subject><subject>Intervention</subject><subject>Large language models</subject><subject>Machine learning</subject><subject>Medical coding</subject><subject>Medical diagnosis</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Neurosurgery</subject><subject>Neurosurgical Procedures - methods</subject><subject>Statistics for Life Sciences</subject><issn>1573-689X</issn><issn>0148-5598</issn><issn>1573-689X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1PwyAYxonRuDn9BzwYEi9eqtAWWo5LMz-SqTvMxBthBZYubZlQluy_l63zIx48AG94fu_zwgPAJUa3GKHszmHEMI1QTMLCKYvSIzDEJEsimrP341_1AJw5t0IIMUqzUzBIWE4SisgQ8MlG1F50VbuEU2GXKuzt0otQPBupage1sXDsO9OITklYzOawCAKcWSWrsqtMC6sWTlppNsKVvhYWvihvjfPBzG7PwYkWtVMXh3ME3u4n8-Ixmr4-PBXjaVTGhHYRZaVO81gzrQmWilKV56UQCxkTzFJCkNSkTFCGUKqDSFMiSLpIVLhmQsY0GYGb3ndtzYdXruNN5UpV16JVxjueYMJonjMWB_T6D7oy3rbhdXuK5DGiOyruqTL8xVml-dpWjbBbjhHfxc_7-HmIn-_j52loujpY-0Wj5HfLV94BSHrABakNAf3M_sf2EztvkB0</recordid><startdate>20250124</startdate><enddate>20250124</enddate><creator>Roy, Joanna M.</creator><creator>Self, D. Mitchell</creator><creator>Isch, Emily</creator><creator>Musmar, Basel</creator><creator>Lan, Matthews</creator><creator>Keppetipola, Kavantissa</creator><creator>Koduri, Sravanthi</creator><creator>Pontarelli, Mary-Katharine</creator><creator>Tjoumakaris, Stavropoula I.</creator><creator>Gooch, M. Reid</creator><creator>Rosenwasser, Robert H.</creator><creator>Jabbour, Pascal M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20250124</creationdate><title>Evaluating Large Language Models for Automated CPT Code Prediction in Endovascular Neurosurgery</title><author>Roy, Joanna M. ; Self, D. Mitchell ; Isch, Emily ; Musmar, Basel ; Lan, Matthews ; Keppetipola, Kavantissa ; Koduri, Sravanthi ; Pontarelli, Mary-Katharine ; Tjoumakaris, Stavropoula I. ; Gooch, M. Reid ; Rosenwasser, Robert H. ; Jabbour, Pascal M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-69cf482f9ff51de66e88caabd25194550df5c307004f66e645a54b3edf59ad263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Cardiovascular system</topic><topic>Chatbots</topic><topic>Chi-square test</topic><topic>Codes</topic><topic>Current Procedural Terminology</topic><topic>Endovascular Procedures - methods</topic><topic>Health care expenditures</topic><topic>Health Informatics</topic><topic>Health Sciences</topic><topic>Humans</topic><topic>Intervention</topic><topic>Large language models</topic><topic>Machine learning</topic><topic>Medical coding</topic><topic>Medical diagnosis</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Neurosurgery</topic><topic>Neurosurgical Procedures - methods</topic><topic>Statistics for Life Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Joanna M.</creatorcontrib><creatorcontrib>Self, D. Mitchell</creatorcontrib><creatorcontrib>Isch, Emily</creatorcontrib><creatorcontrib>Musmar, Basel</creatorcontrib><creatorcontrib>Lan, Matthews</creatorcontrib><creatorcontrib>Keppetipola, Kavantissa</creatorcontrib><creatorcontrib>Koduri, Sravanthi</creatorcontrib><creatorcontrib>Pontarelli, Mary-Katharine</creatorcontrib><creatorcontrib>Tjoumakaris, Stavropoula I.</creatorcontrib><creatorcontrib>Gooch, M. Reid</creatorcontrib><creatorcontrib>Rosenwasser, Robert H.</creatorcontrib><creatorcontrib>Jabbour, Pascal M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, Joanna M.</au><au>Self, D. Mitchell</au><au>Isch, Emily</au><au>Musmar, Basel</au><au>Lan, Matthews</au><au>Keppetipola, Kavantissa</au><au>Koduri, Sravanthi</au><au>Pontarelli, Mary-Katharine</au><au>Tjoumakaris, Stavropoula I.</au><au>Gooch, M. Reid</au><au>Rosenwasser, Robert H.</au><au>Jabbour, Pascal M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating Large Language Models for Automated CPT Code Prediction in Endovascular Neurosurgery</atitle><jtitle>Journal of medical systems</jtitle><stitle>J Med Syst</stitle><addtitle>J Med Syst</addtitle><date>2025-01-24</date><risdate>2025</risdate><volume>49</volume><issue>1</issue><spage>15</spage><pages>15-</pages><artnum>15</artnum><issn>1573-689X</issn><issn>0148-5598</issn><eissn>1573-689X</eissn><abstract>Large language models (LLMs) have been utilized to automate tasks like writing discharge summaries and operative reports in neurosurgery. The present study evaluates their ability to identify current procedural terminology (CPT) codes from operative reports. Three LLMs (ChatGPT 4.0, AtlasGPT and Gemini) were evaluated in their ability to provide CPT codes for diagnostic or interventional procedures in endovascular neurosurgery at a single institution. Responses were classified as correct, partially correct or incorrect, and the percentage of correctly identified CPT codes were calculated. The Chi-Square test and Kruskal Wallis test were used to compare responses across LLMs. A total of 30 operative notes were used in the present study. AtlasGPT identified CPT codes for 98.3% procedures with partially correct responses, while ChatGPT and Gemini provided partially correct responses for 86.7% and 30% procedures, respectively ( P  &lt; 0.001). AtlasGPT identified CPT codes correctly in an average of 35.3% of procedures, followed by ChatGPT (35.1%) and Gemini (8.9%) ( P  &lt; 0.001). A pairwise comparison among three LLMs revealed that AtlasGPT and ChatGPT outperformed Gemini. Untrained LLMs have the ability to identify partially correct CPT codes in endovascular neurosurgery. Training these models could further enhance their ability to identify CPT codes and minimize healthcare expenditure.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>39853605</pmid><doi>10.1007/s10916-025-02149-4</doi></addata></record>
fulltext fulltext
identifier ISSN: 1573-689X
ispartof Journal of medical systems, 2025-01, Vol.49 (1), p.15, Article 15
issn 1573-689X
0148-5598
1573-689X
language eng
recordid cdi_proquest_miscellaneous_3159688992
source MEDLINE; SpringerLink Journals
subjects Artificial intelligence
Automation
Cardiovascular system
Chatbots
Chi-square test
Codes
Current Procedural Terminology
Endovascular Procedures - methods
Health care expenditures
Health Informatics
Health Sciences
Humans
Intervention
Large language models
Machine learning
Medical coding
Medical diagnosis
Medicine
Medicine & Public Health
Neurosurgery
Neurosurgical Procedures - methods
Statistics for Life Sciences
title Evaluating Large Language Models for Automated CPT Code Prediction in Endovascular Neurosurgery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T08%3A11%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20Large%20Language%20Models%20for%20Automated%20CPT%20Code%20Prediction%20in%20Endovascular%20Neurosurgery&rft.jtitle=Journal%20of%20medical%20systems&rft.au=Roy,%20Joanna%20M.&rft.date=2025-01-24&rft.volume=49&rft.issue=1&rft.spage=15&rft.pages=15-&rft.artnum=15&rft.issn=1573-689X&rft.eissn=1573-689X&rft_id=info:doi/10.1007/s10916-025-02149-4&rft_dat=%3Cproquest_cross%3E3159688992%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3159582062&rft_id=info:pmid/39853605&rfr_iscdi=true