An integrated multiphase dynamic genome-scale model explains batch fermentations led by species of the Saccharomyces genus
During batch fermentation, a variety of compounds are synthesized, as microorganisms undergo distinct growth phases: lag, exponential, growth-no-growth transition, stationary, and decay. A detailed understanding of the metabolic pathways involved in these phases is crucial for optimizing the product...
Gespeichert in:
Veröffentlicht in: | mSystems 2025-01, p.e0161524 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | During batch fermentation, a variety of compounds are synthesized, as microorganisms undergo distinct growth phases: lag, exponential, growth-no-growth transition, stationary, and decay. A detailed understanding of the metabolic pathways involved in these phases is crucial for optimizing the production of target compounds. Dynamic flux balance analysis (dFBA) offers insight into the dynamics of metabolic pathways. However, explaining secondary metabolism remains a challenge. A multiphase and multi-objective dFBA scheme (MPMO model) has been proposed for this purpose. However, its formulation is discontinuous, changing from phase to phase; its accuracy in predicting intracellular fluxes is hampered by the lack of a mechanistic link between phases; and its simulation requires considerable computational effort. To address these limitations, we combine a novel model with a genome-scale model to predict the distribution of intracellular fluxes throughout batch fermentation. This integrated multiphase continuous model (IMC) has a unique formulation over time, and it incorporates empirical regulatory descriptions to automatically identify phase transitions and incorporates the hypotheses that yeasts might vary their cellular objective over time to adapt to the changing environment. We validated the predictive capacity of the IMC model by comparing its predictions with intracellular metabolomics data for
during batch fermentation. The model aligns well with the data, confirming its predictive capabilities. Notably, the IMC model accurately predicts trehalose accumulation, which was enforced in the MPMO model. We further demonstrate the generalizability of the IMC model, explaining the dynamics of primary and secondary metabolism of three
species. The model provides biological insights consistent with the literature and metabolomics data, establishing it as a valuable tool for exploring the dynamics of novel fermentation processes.IMPORTANCEThis work presents an integrated multiphase continuous dynamic genome-scale model (IMC model) for batch fermentation, a crucial process widely used in industry to produce biofuels, enzymes, pharmaceuticals, and food products or ingredients. The IMC model integrates a continuous kinetic model with a genome-scale model to address the critical limitations of existing dynamic flux balance analysis schemes, such as the difficulty of explaining secondary metabolism, the lack of mechanistic links between growth phases, or the high comp |
---|---|
ISSN: | 2379-5077 2379-5077 |
DOI: | 10.1128/msystems.01615-24 |