Ultrafast Preparation of High-Entropy NASICON Cathode Enables Stabilized Multielectron Redox and Wide-Temperature (-50-60 °C) Workability in Sodium-Ion Batteries

Avoiding severe structural distortion, irreversible phase transition, and realizing the stabilized multielectron redox are vital for promoting the development of high-performance NASICON-type cathode materials for sodium-ion batteries (SIBs). Herein, a high-entropy Na V Fe Ti Mn Cr (PO ) (HE-Na TMP)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2025-01, p.e2418219
Hauptverfasser: Du, Miao, Li, Kai, Yu, Ning, Hao, Ze-Lin, Guo, Jin-Zhi, Liang, Hao-Jie, Gu, Zhen-Yi, Zhang, Xiao-Hua, Zhang, Kai-Yang, Liu, Yan, Yang, Jia-Lin, Liu, Yi-Tong, Wu, Xing-Long
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Avoiding severe structural distortion, irreversible phase transition, and realizing the stabilized multielectron redox are vital for promoting the development of high-performance NASICON-type cathode materials for sodium-ion batteries (SIBs). Herein, a high-entropy Na V Fe Ti Mn Cr (PO ) (HE-Na TMP) cathode material is prepared by ultrafast high-temperature shock, which inhibits the possibility of phase separation and achieves reversible and stable multielectron transfer of 2.4/2.8 e at voltage range of 2.0-4.45/1.5-4.45 V versus Na /Na (the capacity of 137.2/162.0 mAh g ). The galvanostatic charge/discharge and in-situ X-ray diffraction tests indicate the sequential redox reactions and approximate solid solution phase transition behavior of HE-Na TMP. Density functional theory calculations analyze the migration pathways and energy barriers, further confirming the superior reaction kinetics of HE-Na TMP. Accordingly, the HE-Na TMP exhibits outstanding wide temperature applicability and can operate stably in the temperature range of -50-60 °C, accompanied by a capacity retention of 92.8% after 400 cycles at -40 °C and a capacity of 73.7 mAh g even at -50 °C. The assembled hard carbon//HE-Na TMP full-cell offers an energy density of ≈301 Wh kg based on total cathode and anode active mass, verifying the application feasibility of HE-Na TMP. This work provides an innovative and ultrafast pathway to rationally fabricate high-performance cathodes for SIBs.
ISSN:0935-9648
1521-4095
1521-4095
DOI:10.1002/adma.202418219