Creating chromaticity palettes and identifying white light emitters through nanocrystal megalibraries

Halide perovskites are used to fabricate energy-efficient optoelectronic devices. Determining which compositions yield desired chromatic responses is challenging, especially when doping strategies are used. Here, we report a way of mapping the compositional space of halide perovskites to generate a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2025-01, Vol.11 (3), p.eads4453
Hauptverfasser: Cai, Tong, Shin, Donghoon, Li, Jun, Xu, David D, Pietryga, Jacob, Zhang, Ye, Mirkin, Chad A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page eads4453
container_title Science advances
container_volume 11
creator Cai, Tong
Shin, Donghoon
Li, Jun
Xu, David D
Pietryga, Jacob
Zhang, Ye
Mirkin, Chad A
description Halide perovskites are used to fabricate energy-efficient optoelectronic devices. Determining which compositions yield desired chromatic responses is challenging, especially when doping strategies are used. Here, we report a way of mapping the compositional space of halide perovskites to generate a light emission or "chromaticity" palette. Megalibraries consisting of millions of Mn -doped PEA PbX (PEA: phenethylammonium, X: halide anions) perovskite nanocrystals were synthesized to screen the compositions that led to specific emission profiles. The chromaticity palette allows one to identify single-composition white light emitters [PEA Pb Mn (Br I ) (0 ≤ ≤ 1, 0 ≤ ≤ 1)], eliminating the need for trilayer structures in conventional white light-emitting diodes, which are prone to instability and complex device designs. Optical studies reveal that the dual-wavelength photoluminescence emission originates from exciton recombination and energy transfer processes. This study shows how emerging megalibrary capabilities can rapidly advance our understanding of the complex composition-structure-function relationships and be used to accelerate the discovery of next-generation optoelectronic materials.
doi_str_mv 10.1126/sciadv.ads4453
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3156801795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3156801795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c180t-672b2c0c35d140ba08d0e429e74ffcff17599835f2848a92fe2acbf2a92f6edf3</originalsourceid><addsrcrecordid>eNpNkDtPwzAYRS0EolXpyog8sqT4mceIKl5SJRaYI8f-nBjlUWwHlH9PqhbEdO9w7h0OQteUbChl6V3QTpmvjTJBCMnP0JLxTCZMivz8X1-gdQgfhBAq0lTS4hIteJEzznm6RLD1oKLra6wbP3Rz1S5OeK9aiBECVr3BzkAfnZ0O1HfjIuDW1U3E0LmZ8QHHeTrWDe5VP2g_haha3EGtWld55R2EK3RhVRtgfcoVen98eNs-J7vXp5ft_S7RNCcxSTNWMU00l4YKUimSGwKCFZAJa7W1NJNFkXNpWS5yVTALTOnKskNNwVi-QrfH370fPkcIsexc0NC2qodhDCWnMs0JzQo5o5sjqv0Qggdb7r3rlJ9KSsqD3fJotzzZnQc3p--x6sD84b8u-Q_PJXq9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3156801795</pqid></control><display><type>article</type><title>Creating chromaticity palettes and identifying white light emitters through nanocrystal megalibraries</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Cai, Tong ; Shin, Donghoon ; Li, Jun ; Xu, David D ; Pietryga, Jacob ; Zhang, Ye ; Mirkin, Chad A</creator><creatorcontrib>Cai, Tong ; Shin, Donghoon ; Li, Jun ; Xu, David D ; Pietryga, Jacob ; Zhang, Ye ; Mirkin, Chad A</creatorcontrib><description>Halide perovskites are used to fabricate energy-efficient optoelectronic devices. Determining which compositions yield desired chromatic responses is challenging, especially when doping strategies are used. Here, we report a way of mapping the compositional space of halide perovskites to generate a light emission or "chromaticity" palette. Megalibraries consisting of millions of Mn -doped PEA PbX (PEA: phenethylammonium, X: halide anions) perovskite nanocrystals were synthesized to screen the compositions that led to specific emission profiles. The chromaticity palette allows one to identify single-composition white light emitters [PEA Pb Mn (Br I ) (0 ≤ ≤ 1, 0 ≤ ≤ 1)], eliminating the need for trilayer structures in conventional white light-emitting diodes, which are prone to instability and complex device designs. Optical studies reveal that the dual-wavelength photoluminescence emission originates from exciton recombination and energy transfer processes. This study shows how emerging megalibrary capabilities can rapidly advance our understanding of the complex composition-structure-function relationships and be used to accelerate the discovery of next-generation optoelectronic materials.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.ads4453</identifier><identifier>PMID: 39823336</identifier><language>eng</language><publisher>United States</publisher><ispartof>Science advances, 2025-01, Vol.11 (3), p.eads4453</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c180t-672b2c0c35d140ba08d0e429e74ffcff17599835f2848a92fe2acbf2a92f6edf3</cites><orcidid>0000-0001-5953-2173 ; 0000-0002-4468-6767 ; 0000-0002-7498-6736 ; 0009-0009-6649-3665 ; 0000-0002-0413-7958 ; 0000-0002-5017-547X ; 0000-0002-6634-7627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39823336$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, Tong</creatorcontrib><creatorcontrib>Shin, Donghoon</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Xu, David D</creatorcontrib><creatorcontrib>Pietryga, Jacob</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><creatorcontrib>Mirkin, Chad A</creatorcontrib><title>Creating chromaticity palettes and identifying white light emitters through nanocrystal megalibraries</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Halide perovskites are used to fabricate energy-efficient optoelectronic devices. Determining which compositions yield desired chromatic responses is challenging, especially when doping strategies are used. Here, we report a way of mapping the compositional space of halide perovskites to generate a light emission or "chromaticity" palette. Megalibraries consisting of millions of Mn -doped PEA PbX (PEA: phenethylammonium, X: halide anions) perovskite nanocrystals were synthesized to screen the compositions that led to specific emission profiles. The chromaticity palette allows one to identify single-composition white light emitters [PEA Pb Mn (Br I ) (0 ≤ ≤ 1, 0 ≤ ≤ 1)], eliminating the need for trilayer structures in conventional white light-emitting diodes, which are prone to instability and complex device designs. Optical studies reveal that the dual-wavelength photoluminescence emission originates from exciton recombination and energy transfer processes. This study shows how emerging megalibrary capabilities can rapidly advance our understanding of the complex composition-structure-function relationships and be used to accelerate the discovery of next-generation optoelectronic materials.</description><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpNkDtPwzAYRS0EolXpyog8sqT4mceIKl5SJRaYI8f-nBjlUWwHlH9PqhbEdO9w7h0OQteUbChl6V3QTpmvjTJBCMnP0JLxTCZMivz8X1-gdQgfhBAq0lTS4hIteJEzznm6RLD1oKLra6wbP3Rz1S5OeK9aiBECVr3BzkAfnZ0O1HfjIuDW1U3E0LmZ8QHHeTrWDe5VP2g_haha3EGtWld55R2EK3RhVRtgfcoVen98eNs-J7vXp5ft_S7RNCcxSTNWMU00l4YKUimSGwKCFZAJa7W1NJNFkXNpWS5yVTALTOnKskNNwVi-QrfH370fPkcIsexc0NC2qodhDCWnMs0JzQo5o5sjqv0Qggdb7r3rlJ9KSsqD3fJotzzZnQc3p--x6sD84b8u-Q_PJXq9</recordid><startdate>20250117</startdate><enddate>20250117</enddate><creator>Cai, Tong</creator><creator>Shin, Donghoon</creator><creator>Li, Jun</creator><creator>Xu, David D</creator><creator>Pietryga, Jacob</creator><creator>Zhang, Ye</creator><creator>Mirkin, Chad A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5953-2173</orcidid><orcidid>https://orcid.org/0000-0002-4468-6767</orcidid><orcidid>https://orcid.org/0000-0002-7498-6736</orcidid><orcidid>https://orcid.org/0009-0009-6649-3665</orcidid><orcidid>https://orcid.org/0000-0002-0413-7958</orcidid><orcidid>https://orcid.org/0000-0002-5017-547X</orcidid><orcidid>https://orcid.org/0000-0002-6634-7627</orcidid></search><sort><creationdate>20250117</creationdate><title>Creating chromaticity palettes and identifying white light emitters through nanocrystal megalibraries</title><author>Cai, Tong ; Shin, Donghoon ; Li, Jun ; Xu, David D ; Pietryga, Jacob ; Zhang, Ye ; Mirkin, Chad A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c180t-672b2c0c35d140ba08d0e429e74ffcff17599835f2848a92fe2acbf2a92f6edf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Tong</creatorcontrib><creatorcontrib>Shin, Donghoon</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Xu, David D</creatorcontrib><creatorcontrib>Pietryga, Jacob</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><creatorcontrib>Mirkin, Chad A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Tong</au><au>Shin, Donghoon</au><au>Li, Jun</au><au>Xu, David D</au><au>Pietryga, Jacob</au><au>Zhang, Ye</au><au>Mirkin, Chad A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creating chromaticity palettes and identifying white light emitters through nanocrystal megalibraries</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2025-01-17</date><risdate>2025</risdate><volume>11</volume><issue>3</issue><spage>eads4453</spage><pages>eads4453-</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Halide perovskites are used to fabricate energy-efficient optoelectronic devices. Determining which compositions yield desired chromatic responses is challenging, especially when doping strategies are used. Here, we report a way of mapping the compositional space of halide perovskites to generate a light emission or "chromaticity" palette. Megalibraries consisting of millions of Mn -doped PEA PbX (PEA: phenethylammonium, X: halide anions) perovskite nanocrystals were synthesized to screen the compositions that led to specific emission profiles. The chromaticity palette allows one to identify single-composition white light emitters [PEA Pb Mn (Br I ) (0 ≤ ≤ 1, 0 ≤ ≤ 1)], eliminating the need for trilayer structures in conventional white light-emitting diodes, which are prone to instability and complex device designs. Optical studies reveal that the dual-wavelength photoluminescence emission originates from exciton recombination and energy transfer processes. This study shows how emerging megalibrary capabilities can rapidly advance our understanding of the complex composition-structure-function relationships and be used to accelerate the discovery of next-generation optoelectronic materials.</abstract><cop>United States</cop><pmid>39823336</pmid><doi>10.1126/sciadv.ads4453</doi><orcidid>https://orcid.org/0000-0001-5953-2173</orcidid><orcidid>https://orcid.org/0000-0002-4468-6767</orcidid><orcidid>https://orcid.org/0000-0002-7498-6736</orcidid><orcidid>https://orcid.org/0009-0009-6649-3665</orcidid><orcidid>https://orcid.org/0000-0002-0413-7958</orcidid><orcidid>https://orcid.org/0000-0002-5017-547X</orcidid><orcidid>https://orcid.org/0000-0002-6634-7627</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2025-01, Vol.11 (3), p.eads4453
issn 2375-2548
2375-2548
language eng
recordid cdi_proquest_miscellaneous_3156801795
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
title Creating chromaticity palettes and identifying white light emitters through nanocrystal megalibraries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A58%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creating%20chromaticity%20palettes%20and%20identifying%20white%20light%20emitters%20through%20nanocrystal%20megalibraries&rft.jtitle=Science%20advances&rft.au=Cai,%20Tong&rft.date=2025-01-17&rft.volume=11&rft.issue=3&rft.spage=eads4453&rft.pages=eads4453-&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.ads4453&rft_dat=%3Cproquest_cross%3E3156801795%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3156801795&rft_id=info:pmid/39823336&rfr_iscdi=true