Creating chromaticity palettes and identifying white light emitters through nanocrystal megalibraries
Halide perovskites are used to fabricate energy-efficient optoelectronic devices. Determining which compositions yield desired chromatic responses is challenging, especially when doping strategies are used. Here, we report a way of mapping the compositional space of halide perovskites to generate a...
Gespeichert in:
Veröffentlicht in: | Science advances 2025-01, Vol.11 (3), p.eads4453 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Halide perovskites are used to fabricate energy-efficient optoelectronic devices. Determining which compositions yield desired chromatic responses is challenging, especially when doping strategies are used. Here, we report a way of mapping the compositional space of halide perovskites to generate a light emission or "chromaticity" palette. Megalibraries consisting of millions of Mn
-doped PEA
PbX
(PEA: phenethylammonium, X: halide anions) perovskite nanocrystals were synthesized to screen the compositions that led to specific emission profiles. The chromaticity palette allows one to identify single-composition white light emitters [PEA
Pb
Mn
(Br
I
)
(0 ≤
≤ 1, 0 ≤
≤ 1)], eliminating the need for trilayer structures in conventional white light-emitting diodes, which are prone to instability and complex device designs. Optical studies reveal that the dual-wavelength photoluminescence emission originates from exciton recombination and energy transfer processes. This study shows how emerging megalibrary capabilities can rapidly advance our understanding of the complex composition-structure-function relationships and be used to accelerate the discovery of next-generation optoelectronic materials. |
---|---|
ISSN: | 2375-2548 2375-2548 |
DOI: | 10.1126/sciadv.ads4453 |