Exploiting photopolymerization to modulate liquid crystalline network actuation
Liquid Crystalline Networks (LCNs) are widely investigated to develop actuators, from soft robots to artificial muscles. Indeed, they can produce forces and movements in response to a plethora of external stimuli, showing kinetics up to the millisecond time-scale. One of the most explored preparatio...
Gespeichert in:
Veröffentlicht in: | Soft matter 2025-01 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Liquid Crystalline Networks (LCNs) are widely investigated to develop actuators, from soft robots to artificial muscles. Indeed, they can produce forces and movements in response to a plethora of external stimuli, showing kinetics up to the millisecond time-scale. One of the most explored preparation technique involves the photopolymerization of an aligned layer of reactive mesogens. Following this approach, side-chain polymers are widely described, while a detailed comparison of light-responsive LCNs with different architectures is not properly addressed. In this paper, two synthetic approaches are exploited leading to photoresponsive LCNs with different architectures. Mixed main-chain/side-chain LCNs are obtained in one-pot through a thiol-acrylate chain-transfer reaction, while main-chain LCNs are achieved by a two-step approach involving an aza-Michael addition followed by acrylate crosslinking. Comparison among the two materials highlighted the superior performances in terms of tension developed upon light-activation of the former one, showing muscle-like force production comparable to standard side-chain LCNs combined with the greater ability to contract from common main-chain LCNs. |
---|---|
ISSN: | 1744-683X 1744-6848 1744-6848 |
DOI: | 10.1039/d4sm01360c |