Induction of Nanoscale Magnetic Ordering in Non-Ferrous Layered Double Hydroxides: Stabilizing Spintronic Electrocatalysis
Inducing magnetic ordering in a non-ferrous layered double hydroxides (LDHs) instigates higher spin polarization, which leads to enhanced efficiency during oxygen evolution reaction (OER). In nano-sized magnetic materials, the concept of elongated grains drives domain alignment under the application...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2025-01, p.e2412021 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Inducing magnetic ordering in a non-ferrous layered double hydroxides (LDHs) instigates higher spin polarization, which leads to enhanced efficiency during oxygen evolution reaction (OER). In nano-sized magnetic materials, the concept of elongated grains drives domain alignment under the application of an external magnetic field. Hence, near the solid electrode interface, modified magnetohydrodynamics (MHD) positively impacts the electrocatalytic ability of non-ferrous nanocatalysts. Consequently, significant improvement in the water-splitting kinetics can be obtained by using even low magnetic fields. At 100 Gauss, 20% and 10% decrement in the overpotential is reported for OER and hydrogen evolution reaction (HER), respectively. Density functional theory (DFT) calculations are also presented to explain the thermodynamics of the HER/OER processes. It is established that the Gibbs energy of the process can reduce the exchange energy barrier by using dopant like cobalt. The additional cobalt metal active site have the highest probability for adsorption of reactive intermediates during HER and OER, which results in higher efficiencies. |
---|---|
ISSN: | 1613-6810 1613-6829 1613-6829 |
DOI: | 10.1002/smll.202412021 |