Improved YOLOv8n based helmet wearing inspection method

This paper proposes the YOLOv8n_H method to address issues regarding parameter redundancy, slow inference speed, and suboptimal detection precision in contemporary helmet-wearing target recognition algorithms. The YOLOv8 C2f module is enhanced with a new SC_Bottleneck structure, incorporating the SC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2025-01, Vol.15 (1), p.1945, Article 1945
Hauptverfasser: Chen, Xinying, Jiao, Zhisheng, Liu, Yuefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes the YOLOv8n_H method to address issues regarding parameter redundancy, slow inference speed, and suboptimal detection precision in contemporary helmet-wearing target recognition algorithms. The YOLOv8 C2f module is enhanced with a new SC_Bottleneck structure, incorporating the SCConv module, now termed SC_C2f, to mitigate model complexity and computational costs. Additionally, the original Detect structure is substituted with the PC-Head decoupling head, leading to a significant reduction in parameter count and an enhancement in model efficiency. Moreover, the original Detect structure is replaced by the PC-Head decoupling head, significantly reducing parameter count and enhancing model efficiency. Finally, regression accuracy and convergence speed are boosted by the dynamic non-monotonic focusing mechanism introduced through the WIoU boundary loss function. Experimental results on the expanded SHWD dataset demonstrate a 46.63% reduction in model volume, a 44.19% decrease in parameter count, a 54.88% reduction in computational load, and an improvement in mean Average Precision (mAP) to 93.8% compared to the original YOLOv8 algorithm. In comparison to other algorithms, the model proposed in this paper markedly reduces model size, parameter count, and computational load while ensuring superior detection accuracy.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-84555-1