Energy-efficient multimodal zero-shot learning using in-memory reservoir computing
To achieve an advanced neuromorphic computing system with brain-like energy efficiency and generalization capabilities, we propose a hardware–software co-design of in-memory reservoir computing. This co-design integrates a liquid state machine-based encoder with artificial neural network projections...
Gespeichert in:
Veröffentlicht in: | Nature Computational Science 2025-01, Vol.5 (1), p.11-12 |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To achieve an advanced neuromorphic computing system with brain-like energy efficiency and generalization capabilities, we propose a hardware–software co-design of in-memory reservoir computing. This co-design integrates a liquid state machine-based encoder with artificial neural network projections on a hybrid analog–digital system, demonstrating zero-shot learning for multimodal event data. |
---|---|
ISSN: | 2662-8457 2662-8457 |
DOI: | 10.1038/s43588-024-00762-w |