Energy-efficient multimodal zero-shot learning using in-memory reservoir computing

To achieve an advanced neuromorphic computing system with brain-like energy efficiency and generalization capabilities, we propose a hardware–software co-design of in-memory reservoir computing. This co-design integrates a liquid state machine-based encoder with artificial neural network projections...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature Computational Science 2025-01, Vol.5 (1), p.11-12
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To achieve an advanced neuromorphic computing system with brain-like energy efficiency and generalization capabilities, we propose a hardware–software co-design of in-memory reservoir computing. This co-design integrates a liquid state machine-based encoder with artificial neural network projections on a hybrid analog–digital system, demonstrating zero-shot learning for multimodal event data.
ISSN:2662-8457
2662-8457
DOI:10.1038/s43588-024-00762-w