Benchmarking residue-resolution protein coarse-grained models for simulations of biomolecular condensates
Intracellular liquid-liquid phase separation (LLPS) of proteins and nucleic acids is a fundamental mechanism by which cells compartmentalize their components and perform essential biological functions. Molecular simulations play a crucial role in providing microscopic insights into the physicochemic...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2025-01, Vol.21 (1), p.e1012737 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Intracellular liquid-liquid phase separation (LLPS) of proteins and nucleic acids is a fundamental mechanism by which cells compartmentalize their components and perform essential biological functions. Molecular simulations play a crucial role in providing microscopic insights into the physicochemical processes driving this phenomenon. In this study, we systematically compare six state-of-the-art sequence-dependent residue-resolution models to evaluate their performance in reproducing the phase behaviour and material properties of condensates formed by seven variants of the low-complexity domain (LCD) of the hnRNPA1 protein (A1-LCD)-a protein implicated in the pathological liquid-to-solid transition of stress granules. Specifically, we assess the HPS, HPS-cation-π, HPS-Urry, CALVADOS2, Mpipi, and Mpipi-Recharged models in their predictions of the condensate saturation concentration, critical solution temperature, and condensate viscosity of the A1-LCD variants. Our analyses demonstrate that, among the tested models, Mpipi, Mpipi-Recharged, and CALVADOS2 provide accurate descriptions of the critical solution temperatures and saturation concentrations for the multiple A1-LCD variants tested. Regarding the prediction of material properties for condensates of A1-LCD and its variants, Mpipi-Recharged stands out as the most reliable model. Overall, this study benchmarks a range of residue-resolution coarse-grained models for the study of the thermodynamic stability and material properties of condensates and establishes a direct link between their performance and the ranking of intermolecular interactions these models consider. |
---|---|
ISSN: | 1553-7358 1553-7358 |
DOI: | 10.1371/journal.pcbi.1012737 |