Simulating synergism or antagonism in binary mixtures with different modeling approaches – A case study focused on the effect of disinfection by-products on algal growth
This paper aims to test several modeling approaches for predicting toxicity of binary mixtures with potential synergy and antagonism. The approach based on the construction of isoboles was first tested and criticized. In contrast to conventional approaches, and in order to be mathematically consiste...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2025-01, Vol.962, p.178437, Article 178437 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper aims to test several modeling approaches for predicting toxicity of binary mixtures with potential synergy and antagonism. The approach based on the construction of isoboles was first tested and criticized. In contrast to conventional approaches, and in order to be mathematically consistent with the additivity assumptions, non-linear isoboles have been constructed. This approach was compared with that proposed by Minto et al. (2000), which measures deviations from additivity by considering standardized variables and which considers the entire Hill concentration-response curves. The selected models were tested on a case study related to chlorine-based disinfectant by-products (DBPs), using experimental data describing the effect of five DBPs (monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, bromochloroacetic acid and 1,1-dichloropropan-2-one) on a unicellular green algae Raphidocelis subcapitata. The approach based on the construction of isoboles has shown its limitations. Indeed, in cases where the individual substances involved have different slopes in terms of their Hill concentration-effect relationships, the so-called zone of indetermination can be large. Furthermore, conclusions drawn from isoboles based on EC50s or EC20s may not be consistent. Minto's approach makes it possible to construct interaction indicators that consider the entire Hill concentration-response curve. Response surfaces can be constructed to visualize the areas of concentration of the two substances involved that maximize the interaction effects.
[Display omitted]
•Growth inhibition of Raphidocelis subcapitata was measured on DBPs binary mixtures.•Chemical interactions in binary mixtures were modeled with two approaches.•Non-linear isobole approach was tested to predetermined effect levels.•Minto's approach was tested over the entire Hill concentration-response curve.•Minto's model discriminated additive, synergistic and antagonist interactions. |
---|---|
ISSN: | 0048-9697 1879-1026 1879-1026 |
DOI: | 10.1016/j.scitotenv.2025.178437 |