Synergistic effects of NO/H2S gases on antibacterial, anti-inflammatory, and analgesic properties in oral ulcers using a gas-releasing nanoplatform

Oral mucosal wounds are more prone to inflammation due to direct exposure to various microorganisms. This can result in pain, delayed healing, and other complications, affecting patients' daily activities such as eating and speaking. Consequently, the overall quality of life for patients is sig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2025-01
Hauptverfasser: Chen, Yuanqi, Lei, Kezheng, Li, Yinxi, Mu, Zhixiang, Chu, Tengda, Hu, Jiajun, Zeng, Bairui, Wang, Yi, Shen, Jianliang, Cai, Xiaojun, Shi, Tianpeng, Deng, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oral mucosal wounds are more prone to inflammation due to direct exposure to various microorganisms. This can result in pain, delayed healing, and other complications, affecting patients' daily activities such as eating and speaking. Consequently, the overall quality of life for patients is significantly reduced. To address these challenges, we developed a multifunctional therapeutic nanoplatform, DATS@Arg-EA-SA, through the self-assembly of guanidinated dendritic peptides (Arg-EA-SA) that encapsulate diallyl trisulfide (DATS), a hydrogen sulfide (H2S) donor. The guanidine-rich surface of DATS@Arg-EA-SA efficiently neutralizes reactive oxygen species (ROS) in the ulcer microenvironment, generating nitric oxide (NO), which acts as the primary antimicrobial agent by disrupting bacterial membranes. Concurrently, the presence of glutathione triggers the release of H2S from DATS, providing supplementary antibacterial support. DATS@Arg-EA-SA effectively kills all bacteria, achieving results comparable to those of penicillin, a classical antibiotic. Moreover, it demonstrates superior sterilization efficacy against drug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), significantly outperforming penicillin. Following the initial antimicrobial phase, the nanoplatform transitions into an anti-inflammatory stage. H2S, in synergy with NO, facilitates the conversion of M1 macrophages to M2 macrophages, thereby reducing the expression of inflammatory factors. Importantly, the combination of H2S and NO provides effective analgesia by downregulating the expression of TRPV1 and TRPV4, thus restoring normal dietary behaviors and improving the overall quality of life. This system ultimately promotes collagen fiber deposition and accelerates the re-epithelialization of the ulcer wound, positioning DATS@Arg-EA-SA as a promising gas-delivery nanoplatform for rapid wound repair in the clinical treatment. Oral mucosal wounds are highly susceptible to microbial infections, leading to inflammation, pain, delayed healing, and a significant decline in quality of life. We developed a multifunctional therapeutic nanoplatform (DATS@Arg-EA-SA) via the self-assembly of guanidinated dendritic peptides encapsulating the H2S donor DATS, which exhibited antibacterial, anti-inflammatory, and analgesic properties. In the oral ulcer microenvironment, DATS@Arg-EA-SA generates substantial NO under elevated ROS levels, while glutathione triggers the controlled release
ISSN:1742-7061
1878-7568
1878-7568
DOI:10.1016/j.actbio.2025.01.013